• 제목/요약/키워드: K2-learning algorithm

검색결과 544건 처리시간 0.033초

예측 정보를 이용한 Q-학습의 성능 개선 기법 (A Strategy for improving Performance of Q-learning with Prediction Information)

  • 이충현;엄기현;조경은
    • 한국게임학회 논문지
    • /
    • 제7권4호
    • /
    • pp.105-116
    • /
    • 2007
  • 게임 환경에서의 학습은 다양한 분야에서 유용하게 활용될 수 있다. 그러나, 학습이 게임에서 만족스러운 결과를 산출하기까지는 많은 학습 시간이 요구된다. 이러한 점을 개선하기 위하여 학습시간을 단축시킬 수 있는 방법론들이 필요하다. 본 논문에서는 예측 정보를 이용한 Q-학습의 성능개선 방안을 제안한다. Q-학습 알고리즘에서는 Q-테이블의 각 상태별 선택된 액션을 참조한다. 참조한 값은 예측 모듈의 P-테이블에 저장되고, 이 테이블에서 출연 빈도가 가장 높은 값을 찾아 2차 보상 값을 갱신할 때 활용한다. 본 연구에서 제시한 방법은 상태내의 전이가 가능한 액션의 수가 많을수록 성능이 높아짐을 확인하였다. 또한 실험결과로 실험 중반 이후부터 제안한 방식이 기존 방식보다 평균 9%의 성능 향상을 보였다.

  • PDF

온라인 피드백 에러 학습을 이용한 이동 로봇의 자율주행 알고리즘 개발 (Development of Autonomous Algorithm Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots)

  • 이현동;명병수
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.602-608
    • /
    • 2011
  • 본 논문에서는, 신경망을 이용한 뉴로 인터페이스 설계를 통해 논홀로노믹 이동 로봇을 제어하는 방법을 제시하였다. 특히, 가상의 마스터-슬레이브 로봇 개념을 이용하여, 부분적으로 안정된 마스터 로봇의 역 동적모델이 피드백-에러 학습법을 적용한 신경망을 통해 온라인으로 획득되도록 하였다. 이 피드백 제어기는 PD 보상기에 기초를 두고 있다. 온라인 학습을 위한 신경망은 입력층이 6개의 입력세포들($x_i$, i=1~6)로 구성되어있으며, 1개의 은닉층에는 2개의 은닉세포($o_j$, j=1~2), 출력층은 2개의 출력세포(${\tau}_k$, k=1~2)로 구성되었고, 신경망의 온라인 학습을 위하여 최소자승법에 의한 오류역전파 알고리즘을 이용하였다. 본 연구에서 개발된 뉴로 인터페이스의 경로추적제어에 관한 성능은 2-wheel 독립구동이 가능한 논홀로노믹 이동 로봇의 시뮬레이션으로 증명하였다.

A fast approximate fitting for mixture of multivariate skew t-distribution via EM algorithm

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • 제27권2호
    • /
    • pp.255-268
    • /
    • 2020
  • A mixture of multivariate canonical fundamental skew t-distribution (CFUST) has been of interest in various fields. In particular, interest in the unsupervised learning society is noteworthy. However, fitting the model via EM algorithm suffers from significant processing time. The main cause is due to the calculation of many multivariate t-cdfs (cumulative distribution functions) in E-step. In this article, we provide an approximate, but fast calculation method for the in univariate fashion, which is the product of successively conditional univariate t-cdfs with Taylor's first order approximation. By replacing all multivariate t-cdfs in E-step with the proposed approximate versions, we obtain the admissible results of fitting the model, where it gives 85% reduction time for the 5 dimensional skewness case of the Australian Institution Sport data set. For this approach, discussions about rough properties, advantages and limits are also presented.

Estimation of fundamental period of reinforced concrete shear wall buildings using self organization feature map

  • Nikoo, Mehdi;Hadzima-Nyarko, Marijana;Khademi, Faezehossadat;Mohasseb, Sassan
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.237-249
    • /
    • 2017
  • The Self-Organization Feature Map as an unsupervised network is very widely used these days in engineering science. The applied network in this paper is the Self Organization Feature Map with constant weights which includes Kohonen Network. In this research, Reinforced Concrete Shear Wall buildings with different stories and heights are analyzed and a database consisting of measured fundamental periods and characteristics of 78 RC SW buildings is created. The input parameters of these buildings include number of stories, height, length, width, whereas the output parameter is the fundamental period. In addition, using Genetic Algorithm, the structure of the Self-Organization Feature Map algorithm is optimized with respect to the numbers of layers, numbers of nodes in hidden layers, type of transfer function and learning. Evaluation of the SOFM model was performed by comparing the obtained values to the measured values and values calculated by expressions given in building codes. Results show that the Self-Organization Feature Map, which is optimized by using Genetic Algorithm, has a higher capacity, flexibility and accuracy in predicting the fundamental period.

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

QoE 향상을 위한 Deep Q-Network 기반의 지능형 비디오 스트리밍 메커니즘 (An Intelligent Video Streaming Mechanism based on a Deep Q-Network for QoE Enhancement)

  • 김이슬;홍성준;정성욱;임경식
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.188-198
    • /
    • 2018
  • With recent development of high-speed wide-area wireless networks and wide spread of highperformance wireless devices, the demand on seamless video streaming services in Long Term Evolution (LTE) network environments is ever increasing. To meet the demand and provide enhanced Quality of Experience (QoE) with mobile users, the Dynamic Adaptive Streaming over HTTP (DASH) has been actively studied to achieve QoE enhanced video streaming service in dynamic network environments. However, the existing DASH algorithm to select the quality of requesting video segments is based on a procedural algorithm so that it reveals a limitation to adapt its performance to dynamic network situations. To overcome this limitation this paper proposes a novel quality selection mechanism based on a Deep Q-Network (DQN) model, the DQN-based DASH ABR($DQN_{ABR}$) mechanism. The $DQN_{ABR}$ mechanism replaces the existing DASH ABR algorithm with an intelligent deep learning model which optimizes service quality to mobile users through reinforcement learning. Compared to the existing approaches, the experimental analysis shows that the proposed solution outperforms in terms of adapting to dynamic wireless network situations and improving QoE experience of end users.

다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구 (The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms)

  • 김정훈;김민용;권오병
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.23-45
    • /
    • 2020
  • 기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는 것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별 알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는 것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl-Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을 생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의 메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.

CSI를 활용한 딥러닝 기반의 실내 사람 수 추정 기법 (A Deep Learning Based Device-free Indoor People Counting Using CSI)

  • 안현성;김승구
    • 한국정보통신학회논문지
    • /
    • 제24권7호
    • /
    • pp.935-941
    • /
    • 2020
  • 사람 수 추정 기술은 IoT 서비스를 제공하기 위해 중요하다. 대부분의 사람 수 추정 기술은 카메라 또는 센서 데이터를 활용한다. 하지만 기존 기술들은 사생활 침해 문제가 발생 가능하며 추가로 인프라를 구축해야한다는 단점이 있다. 본 논문은 Wi-Fi AP를 활용하여 사람 수를 추정하는 방법을 제안한다. 사람 수 추정을 위해서 Wi-Fi의 채널 상태 정보를 딥러닝 기술을 활용하여 분석한다. Wi-Fi AP 기반 사람 수 추정 기술은 사생활 침해 우려가 없으며, 기존 Wi-Fi AP 인프라를 활용하면 되기 때문에 추가 비용이 발생하지 않는다. 제안하는 알고리즘은 k-바인딩 데이터 전처리 과정과 1D-CNN 학습 모델을 사용한다. AP 2대를 설치하여 6명의 사람 수 추정 결과를 실험을 통해 분석하였다. 정확한 사람 수 판별에 관한 결과는 64.8%로 낮은 결과를 보였지만, 사람의 수를 클래스로 분류한 결과는 84.5%의 높은 결과를 보였다. 해당 알고리즘은 제한된 공간에 사람의 밀집도를 파악하는데 응용 가능할 것으로 기대된다.

CNN을 사용한 차선검출 시스템 (Lane Detection System using CNN)

  • 김지훈;이대식;이민호
    • 대한임베디드공학회논문지
    • /
    • 제11권3호
    • /
    • pp.163-171
    • /
    • 2016
  • Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural network (CNN) for image enhancement. CNN is a deep learning method that has been very successfully applied in object detection and recognition. In this paper, we introduce a robust lane detection method based on a CNN combined with random sample consensus (RANSAC) algorithm. Initially, we calculate edges in an image using a hat shaped kernel, then we detect lanes using the CNN combined with the RANSAC. In the training process of the CNN, input data consists of edge images and target data is images that have real white color lanes on an otherwise black background. The CNN structure consists of 8 layers with 3 convolutional layers, 2 subsampling layers and multi-layer perceptron (MLP) of 3 fully-connected layers. Convolutional and subsampling layers are hierarchically arranged to form a deep structure. Our proposed lane detection algorithm successfully eliminates noise lines and was found to perform better than other formal line detection algorithms such as RANSAC

균형 표본 유전 알고리즘과 극한 기계학습에 기반한 바이오표지자 검출기와 파킨슨 병 진단 접근법 (Bio-marker Detector and Parkinson's disease diagnosis Approach based on Samples Balanced Genetic Algorithm and Extreme Learning Machine)

  • ;;최용수
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권6호
    • /
    • pp.509-521
    • /
    • 2016
  • 본 논문에서는 파킨슨 병 진단 및 바이오 표지자 검출을 위한 극한 기계학습을 결합하는 새로운 균형 표본 유전 알고리즘(SBGA-ELM)을 제안하였다. 접근법은 정확한 파킨슨 병 진단 및 바이오 표지자 검출을 위해 공개 파킨슨 병 데이터베이스로부터 22,283개의 유전자의 발현 데이터를 사용하며 다음의 두 가지 주요 단계를 포함하였다 : 1. 특징(유전자) 선택과 2. 분류단계이다. 특징 선택 단계에서는 제안된 균형 표본 유전 알고리즘에 기반하고 파킨스병 데이터베이스(ParkDB)의 유전자 발현 데이터를 위해 고안되었다. 제안된 제안 된 SBGA는 추가적 분석을 위해 ParkDB에서 활용 가능한 22,283개의 유전자 중에서 강인한 서브셋을 찾는다. 특징분류 단계에서는 정확한 파킨슨 병 진단을 위해 선택된 유전자 세트가 극한 기계학습의 훈련에 사용된다. 발견 된 강인한 유전자 서브세트는 안정된 일반화 성능으로 파킨슨 병 진단을 할 수 있는 ELM 분류기를 생성하게 된다. 제안된 연구에서 강인한 유전자 서브셋은 파킨슨병을 관장할 것으로 예측되는 24개의 바이오 표지자를 발견하는 데도 사용된다. 논문을 통해 발견된 강인 유전자 하위 집합은 SVM이나 PBL-McRBFN과 같은 기존의 파킨슨 병 진단 방법들을 통해 검증되었다. 실시된 두 가지 방법(SVM과 PBL-McRBFN)에 대해 모두 최대 일반화 성능을 나타내었다.