• Title/Summary/Keyword: K0 confining pressure

Search Result 43, Processing Time 0.026 seconds

Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling)

  • Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.433-446
    • /
    • 2020
  • In this paper the effect of confining pressure and tunnel depth on the ground vertical settlement has been investigated using particle flow code (PFC2D). For this perpuse firstly calibration of PFC2D was performed using both of tensile test and triaxial test. Then a model with dimention of 100 m × 100 m was built. A circular tunnel with diameter of 20 m was drillled in the middle of the model. Also, a rectangular tunnel with wide of 10 m and length of 20 m was drilled in the model. The center of tunnel was situated 15 m, 20 m, 25 m, 30 m, 35 m, 40 m, 45 m, 50 m, 55 m and 60 m below the ground surface. these models are under confining pressure of 0.001 GPa, 0.005 GPa, 0.01 GPa, 0.03 GPa, 0.05 GPa and 0.07 GPa. The results show that the volume of colapce zone is constant by increasing the distance between ground surface and tunnel position. Also, the volume of colapce zone was increased by decreasing of confining pressure. The maximum of settlement occurs at the top of the tunnel roof. The maximum of settlement occurs when center of tunnel was situated 15 m below the ground surface. The settlement decreases by increasing the distance between tunnel center line and measuring circles in the ground surface. The minimum of settlement occurs when center of circular tunnel was situated 60 m below the surface ground. Its to be note that the settlement increase by decreasing the confining pressure.

Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands

  • Lee, Sojeong;Im, Jooyoung;Cho, Gye-Chun;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.445-452
    • /
    • 2019
  • Gel-type biopolymers have recently been introduced as environmentally friendly soil binders and have shown substantial strengthening effects in laboratory experimental programs. Although the strengthening effects of biopolymer-treated sands have been verified in previous direct shear tests and uniaxial compression tests, there has been no attempt to examine shear behavior under different confining stress conditions. This study therefore aimed to investigate the strengthening effects of biopolymer-treated sand using laboratory triaxial testing with a focus on confining pressures. Three representative confining pressure conditions (${\sigma}_3=50kPa$, 100 kPa, and 200 kPa) were tested with varying biopolymer contents ($m_{bp}/m_s$) of 0.5%, 1.0%, and 2.0%, respectively. Based on previous studies, it was assumed that biopolymer-treated sand is susceptible to hydraulic conditions, and therefore, the experiments were conducted in both a hydrated xanthan gum condition and a dehydrated xanthan gum condition. The results indicated that the shear resistance was substantially enhanced and there was a demonstrable increase in cohesion as well as the friction angle when the biopolymer film matrix was comprehensively developed. Accordingly, it can be concluded that the feasibility of the biopolymer treatment will remain valid under the confining pressure conditions used in this study because the resisting force of the biopolymer-treated soil was higher than that in the untreated condition, regardless of the confining pressure.

1g shaking table tests on residual soils in Malaysia through different model setups

  • Lim, Jun X.;Lee, Min L.;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.547-558
    • /
    • 2018
  • Studies of soil dynamic properties in Malaysia are still very limited. This study aims to investigate the dynamic properties of two selected tropical residual soils (i.e., Sandy Clay and Sandy Silt) and a sand mining trail (Silty Sand) in Peninsular Malaysia using 1g shaking table test. The use of 1g shaking table test for soil dynamic testing is often constrained to large strain level and small confining pressure only. Three new experimental setups, namely large laminar shear box test (LLSBT), small chamber test with positive air pressure (SCT), and small sample test with suction (SSTS) are attempted with the aims of these experimental setups are capable of evaluating the dynamic properties of soils covering a wider range of shear strain and confining pressure. The details of each experimental setup are described explicitly in this paper. Experimental results show that the combined use of the LLSBT and SCT is capable of rendering soil dynamic properties covering a strain range of 0.017%-1.48% under confining pressures of 5-100 kPa. The studied tropical residual soils in Malaysia behaved neither as pure sand nor clay, but show a relatively good agreement with the dynamic properties of residual soils in Singapore. Effects of confining pressure and plasticity index on the studied tropical residual soils are found to be insignificant in this particular study.

Characteristics of Pressure Confined Concrete under Monotonic Compression

  • Rhim, Hong-Chul;Buyukozturk, Oral;Soon, K. A;Kim, Gwang-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • Tests of cylindrical concrete specimens under lateral confining pressure of up to 5,000 psi were conducted for two different axial loading cases: monotonic compression and monotonic tension. The purpose of this experimental investigation is to provide stress-strain characteristics of plain concrete in triaxial stress conditions. Lateral confining pressure levels, loading rates, and strength of concrete specimens are varied as parameters. The loading rates are $34.75$\times$10^{-5}$ in/in/sec for fast, $\times$$6.95x10^{-5}$ in/in/sec for normal. and $0.579$\times$10^{-5}$ in/in/sec for slow loading cases. The concrete specimens used in the experiment have compressive strength of 3,500 psi and 6,500 psi, respectively. Findings of this experiment include dependency of the stress-strain behavior of concrete on the above parameters under two different types of loading conditions. The parametric study includes a series of 106 triaxial tests.

  • PDF

Shear Behaviour of Sand-silt Mixture under Low and High Confining Pressures (모래-실트 혼합토의 구속압력에 따른 전단특성 파악)

  • Kim, Uk-Gie;Zhuang, Li
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.27-38
    • /
    • 2015
  • Triaxial tests on sand-silt mixture specimens under low and high confining pressures were performed to understand their shear behaviors. The fines content in the mixture is lower than the threshold value. A series of tests under different conditions including fines contents (0%, 9.8%, 14.7%, 19.6%), density of specimen (controlled by different compaction energies of $E_c=22kJ/m^3$, $E_c=504kJ/m^3$), confining pressure (100 kPa, 1 MPa, 3 MPa, 5 MPa) were performed to investigate influences of these factors. Based on the test results, the threshold fines content, where the dominant structure of mixture changes from sand-matrix to fines-matrix, decreases with the increase of confining pressure. Under very high confining pressures, as a result of sand particle crushing, the behavior of the dense specimen is similar to that of the loose specimen which shows hardening, compression behavior, and shear strength increases with increase of fines content. In conclusion, silt is granular material like sand, and its influence on shear behavior of sand-silt mixture is very different from that of plastic fines on sand-fines mixture.

A Characteristic of Deformation and Strength of Domestic Sands by Triaxial Compression Tests (삼축압축시험에 의한 국내 모래의 변형-강도 특성)

  • Park, Choon Sik;Kim, Jong Hwan;Park, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.515-527
    • /
    • 2014
  • This study conducted experiment for understanding engineering characteristics of domestic sands by examining standard sand and sand from Yokji Island and Nakdong River in terms of confining pressure, $K_0$, over consolidation and relative density factors through triaxial compression test. The test showed that deviator stress by strain positively changed as confining pressure and relative density grow while $K_0$ and over consolidation factors do not directly correlated with it. Angle of internal friction decreases as confining pressure increases which strengthens contact force between particles, and declines as relative density drops, whereas $K_0$ and over consolidation factors hardly affect the results. When it comes to volumetric strain, volume expansion decreases as confining pressure increase due to crushability and rearrangement of particles while $K_0$ and over consolidation shows same movement unconditionally, and relative density appears compressed as it grows at the beginning however it expands as axial strain increases. Modulus of elasticity ($E_{sec}$) by strain has tendency into convergence resulting in initial secant modulus of elasticity ($E_{ini}$) > secant modulus of elasticity($E_{sec}$) > tangent modulus of elasticity ($E_{tan}$). On the other hand, it grows as confining pressure and relative density increase while indicating similar modulus of elasticity ($E_{sec}$) regarding on $K_0$ and over consolidation. Slope of critical line (M) tended to decrease as confining pressure increases, follow same line according to $K_0$, confining pressure and relative density, and increase as relative density grows.

A Study on Stress-Strain Behaviour of Geotube Structure Filled with Silty Sand Under Low Confining Pressure by Triaxial Compression Test (실트질 모래가 충진된 지오튜브 구조체의 저 등방조건에서 삼축압축시험에 의한 응력-변위 거동 연구)

  • Hyeong-Joo, Kim;Tae-Woong, Park;Ki-Hong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.69-78
    • /
    • 2022
  • Geotextile tubes are widely used to prevent erosion in coastal areas and to replace the backfill for shore slopes in the reclamation of land using dredged soil. In this study, The triaxial confining pressures were chosen as 10kPa, 50kPa, or 100kPa for the specimens reinforced with geotextile considering the condition in the site. The strain behavior under various compressive stresses was then identified. At strains 0% to 7%, the stress-strain behavior was the same due to the effect of initial strain hardening, in which the force was exerted according to the relaxation of the geotextile regardless of the confining pressure (≤100kPa). At strains of 7% or more, the specimen with the small confining pressure had smaller deformation under load, which increases the tensile resistance provided by the reinforcing geotextile. Brittle fracture was then observed due to strain softening and the deviator stress abruptly decreased. This is different from the phenomenon in which the shear strength increases as the confining pressure increases in general triaxial compression tests. In the geoxtile-confined tests, geotextiles are primarily subjected to tensile displacement. Thereafter, the modulus of elasticity increases rapidly, which exhibits the elastic behavior of the geotextile.

Undrained cyclic shear characteristics and crushing behaviour of silica sand

  • Wu, Yang;Hyodo, Masayuki;Aramaki, Noritaka
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper presents an investigation of the liquefaction characteristics and particle crushing of isotropically consolidated silica sand specimens at a wide range of confining pressures varying from 0.1 MPa to 5 MPa during undrained cyclic shearing. Different failure patterns of silica sand specimens subjected to undrained cyclic loading were seen at low and high pressures. The sudden change points with regard to the increasing double amplitude of axial strain with cycle number were identified, regardless of confining pressure. A higher cyclic stress ratio caused the specimen to liquefy at a relatively smaller cycle number, conversely producing a larger relative breakage $B_r$. The rise in confining pressure also resulted in the increasing relative breakage. At a specific cyclic stress ratio, the relative breakage and plastic work increased with the rise in the cyclic loading. Less particle crushing and plastic work consumption was observed for tests terminated after one cyclic loading. Majority of the particle crushing was produced and majority of the plastic work was consumed after the specimen passed through the phase transformation point and until reaching the failure state. The large amount of particle crushing resulted from the high-level strain induced by particle transformation and rotation.

세립분 함유량에 따른 새만금준설토의 액상화 특성에 관한 연구

  • Kim, You-Seong;Lee, Soo-Guen;Ko, Hyoung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1458-1465
    • /
    • 2010
  • A lot of dredging and reclaming projects are recently under way in Korea for the efficient use of limiting land space. Saemanguem area is special case of reclaiming by dredged soil. In case of a confined disposal of dredged soils by a pump dredger, generally coarse grained soils are separated from fines with dropping at the near part of the pump dredger. This kind of seperation of fine contents could be a factor of liquefaction by earthquake. In Korea, recently, earthquakes with magnitude of 3.0 or higher are distinctively increasing in 1990. In this study, cyclic shear characterics of Saemanguem Dredged sand depending on fine content were analyzed. A series of undrained cyclic triaxial test with cyclic stress ratio ($\sigma_d/{2\sigma_{{\upsilon}c}}'$) were performed on both isotropic consolidated specimen and sand with fine contents of 0%, 5%, 15%, 30%, 40% under the effective vertical stress of 100kPa and 50% and 60%, 70% of relative density for fine content of 0%, respectively. In the test results, cyclic shear strength increased by increasing of cyclic stress ratio($\sigma_d/{2\sigma_{{\upsilon}c}}'$) with increasing the relative density at the same number of cyclic under the effective confining pressure of 100kPa. It is almost highest the double amplitude(DA) 1%, 3%, 5%, 7.5% and 10% at fine content of 15% between Cyclic stress ratio($\sigma_d/{2\sigma_{{\upsilon}c}}'$) value at cyclic number five and fine content. Number of cyclic is 30 under the effective vertical stress of 100kPa, 70% of relative density for fine content of 15%. when the cyclic stress ratio at each relative density was compared at cyclic number five, the double amplitude(DA) 1%, 3%, 5%, 7.5% and 10%, and the pore-pressure ratio (${\Delta}u/{\sigma'}_c$) 0.95 value were compared; under the relative density of 70% and the effective confining pressure of 100kPa. The pore-pressure ratio (${\Delta}u/{\sigma'}_c$) 0.95 value showed a similar trend to the double amplitude (DA) 5% line.

  • PDF

Strength Characteristics and Reinforcing Effect of Compacted Short Fiber Reinforced Clay (단섬유 보강된 다짐토의 강도특성과 보강 효과(지반공학))

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.451-457
    • /
    • 2000
  • A series of consolidated undrained triaxial tests for compacted short fiber reinforced clay were performed to increase the field applications, e.g. retaining wall, waste landfill, soft ground etc. of soil admixtures mixed with short fiber. Kaolin clay and three types of fiber were selected. To acquire reliable length of fibers, an auto cutter was used and a helical mixer was also used to avoid floating of fibers during mixing soil and fibers. It is found that reinforcing effect by aspect ratio and mixing ratio of short fiber decreases as confining pressure is increased. Reinforcing effect has a maximum value at the aspect ratio of 120 and the fiber content of 0.6%∼1.2% and low confining pressure like 50kPa.

  • PDF