• Title/Summary/Keyword: K-stability

Search Result 20,068, Processing Time 0.043 seconds

A Study on Reactive Power Compensation against Voltage Collapse Considering Load Model (부하 모델을 고려한 전압 안정도 측면에서의 무효전력 보상량 결정에 관한 연구)

  • Ham, Jung-Pil;Kim, Jung-Hoon;Lee, Byung-Ha;Won, Jong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.168-170
    • /
    • 2001
  • This paper presents the strategy of reactive power compensation which directly improves voltage stability. Voltage stability index that serves as an indirect assessment of voltage stability margin is derived from M.G.C.F. (Modified Generalized Curve Fit) algorithm incorporating load model. Weak buses are ranked by this stability index, and amounts of reactive power compensation are determined by function of reactive power and stability index. Using the proposed strategy, all load buses can be prevented from voltage collapse gradually. A simple illustrative example is given as well as simulation results obtained on 5 bus test system and 19 bus real power system.

  • PDF

An Integrated Approach to the Improvement of Stability Lobes

  • Mohan, Sekar;Jonnalagadda, Srinivas;Kang, Nam-Cheol;Yang, Seung-Han
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.83-85
    • /
    • 2008
  • Redundant spurious loops and overlapping segments in stability lobe diagrams cannot be removed easily by regular methods. A programmatic approach is presented to detect multiple spurious loops occurring within the lobes. They are identified by reorganizing the numerical lobe data into speed-depth corners for subsequent removal. The same principle is then extended to remove overlapping segments of adjacent lobes to obtain a final continuous stability map. Unlike existing methods, the proposed methodology requires no interface with additional editing software, and can also yield stability lobe diagrams more quickly. The methodology is presented with lobe diagrams constructed using milling and turning models.

Reactive Reserve Based Contingency Constrained Optimal Power Flow for Enhancement of Voltage Stability Margins (전압안정도 여유 향상을 위한 무효예비력 기반 상정사고 제약 최적조류계산)

  • Song, Hwa-Chang;Lee, Byong-Jun;Kwon, Sae-Hyuk;Ajjarapu, Venkataramana
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.19-23
    • /
    • 2003
  • This paper presents a new concept of reactive reserve based contingency constrained optimal power flow (RCCOPF) for voltage stability enhancement. This concept is based on the fact that increase in reactive reserves is effective for enhancement of voltage stability margins of post-contingent states, in this paper, the proposed algorithm is applied to voltage stability margin of interface flow. Interface flow limit, in the open access environment, can be a main drawback. RCCOPF for enhancement of interface flow margin is composed of two modules, modified continuation power flow (MCPF) and optimal power flow (OPF). These modules art recursively perform ed until satisfying the required margin of interface flow in the given voltage stability criteria.

  • PDF

Behaviour and stability of prestressed steel plate girder for torsional buckling

  • Gupta, L.M.;Ronghe, G.N.;Naghate, M.K.
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • A higher level of engineering standard in the field of construction, is the use of prestressing in building structures. The concept of prestressing steel structures has only recently been widely considered, despite a long and successful history of prestressing concrete members. Several analytical studies of prestressed steel girders were reported in literatures, but much of the work was not studied with reference to the optimal design and behaviour of the prestressed steel plate girder. A plate girder prestressed eccentrically, will behave as a beam-column, which is subjected to axial compression and bending moment which will cause the beam to buckle out. The study of buckling of the prestressed steel plate girder is necessary for stability criteria. This paper deals with the stability of prestressed steel plate girder using concept of "Vlasov's Circle of Stability" under eccentric prestressing force.

Wear, Oxidation and Shear Characteristics of Mixed Lubricating Oil (Mineral/Vegetable oil) with ZnDTP (ZnDTP를 첨가한 혼합윤활유(광유/식물성 오일)의 마모, 산화 및 전단 특성)

  • Lim, TaeYoon;Kim, YangHoe;Na, Byung-Ki
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.160-167
    • /
    • 2018
  • Vegetable oils can contribute to the goal of energy independence and security owing to their naturally renewable resources. One of the representative vegetable oils is biodiesel, which is being used in domestic and European markets as a blended fuel with automotive diesel. Vegetable oils are promising candidates as base fluids to replace petroleum lubricants because of their excellent lubricity and biodegradability. We prepared biodiesel with a purity of 99.9% via the esterification of waste cooking oil. Blended biodiesel and Petro-lube base oil were mixed to produce five types of mixed lubricating oil. We analyzed the various characteristics of the blended biodiesel with Petro-lube base oil for different blending ratios. The lubricity of the vegetable lubricant improves as the content of biodiesel increases. In addition, since zinc dialkyldithiophosphates (ZnDTPs) are widely used as multifunctional additives in petroleum-based lubricants, we optimized the blending ratio for lubricity, oxidation stability, and shear stability by adding ZnDTP as a performance additive to improve the biodiesel properties, such as oxidation stability and hydrolysis. The optimized lubricants improve by approximately 25% in lubricity and by 20 times in oxidation stability and shear stability after the addition of ZnDTP.

Application of an Adaptive Autopilot Design and Stability Analysis to an Anti-Ship Missile

  • Han, Kwang-Ho;Sung, Jae-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.78-83
    • /
    • 2011
  • Traditional autopilot design requires an accurate aerodynamic model and relies on a gain schedule to account for system nonlinearities. This paper presents the control architecture applied to a dynamic model inversion at a single flight condition with an on-line neural network (NN) in order to regulate errors caused by approximate inversion. This eliminates the need for an extensive design process and accurate aerodynamic data. The simulation results using a developed full nonlinear 6 degree of freedom model are presented. This paper also presents the stability evaluation for control systems to which NNs were applied. Although feedback can accommodate uncertainty to meet system performance specifications, uncertainty can also affect the stability of the control system. The importance of robustness has long been recognized and stability margins were developed to quantify it. However, the traditional stability margin techniques based on linear control theory can not be applied to control systems upon which a representative non-linear control method, such as NNs, has been applied. This paper presents an alternative stability margin technique for NNs applied to control systems based on the system responses to an inserted gain multiplier or time delay element.

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.

Comparison of Routh-Hurwitz and Absolute Stability Criteria in Application to Scaled Telerobotics Systems (스케일 텔레 로보틱스 시스템에 적용된 Routh-Hurwitz와 절대 안정도 기준의 비교)

  • Gaponov, Igor;Cho, Hyun Chan;Jeon, Hong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.171-179
    • /
    • 2013
  • This paper presents a comparative study on application of Routh-Hurwitz and Llewellyn absolute stability criteria to a scaled telerobotic system. The dynamic equations of the telerobotic system are given, and the transfer function of the system is obtained for further stability analysis. The stable margins of controller gains are obtained using both stability analysis methods, and the differences in the results are described and explained. The paper is concluded by a numerical example verifying performed stability analysis.

The Effect of Osteotome Technique on Primary Implant Stability according to Bone Quality (임플란트 일차 안정성에 있어서 골질에 따른 osteotome 술식의 효과)

  • Baek, Seung-Jae;Lee, Jae-Kwan;Park, Chan-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.777-788
    • /
    • 2005
  • The primary stability of implants is an important factor to predict the osseointegration. Recently, the resonance frequency analysis has been used to measure the primary stability. It is an objective method to monitor the stability of implants during healing phase. This study is to validate the differences in the effect of the osteotome method according to the bone quality as well the thickness of cortical bone. Two hundred seventy implants of 3.75mm in diameter(Neoplant, Neobiotech, Korea) were placed in 135 bovine ribs. The bone quality is classified into 3 classes according to the number of bone marrow spaces which implants would be placed, and then classified into 9 subclasses after the ribs were trimmed. Two implants were placed in 15 specimens of each class. The conclusion were as follows: 1. In case of less dense cancellous bone, the oseotome method is more effective in primary stability rather than the drilling method(p <0.05). 2. If there was cortical bone, it is more advantagous to get stronger primary stability. 3. If cancellous bone is more dense or if cortical bone exists, there is no statistical significance between drilling and osteotome method(p <0.05).

Non-uniform wind environment in mountainous terrain and aerostatic stability of a bridge

  • Chen, Xingyu;Guo, Junjie;Tang, Haojun;Li, Yongle;Wang, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.649-662
    • /
    • 2020
  • The existence of a dam has potential effects on the surrounding wind environment especially when it is located in mountainous areas. In this situation, the long-span bridge over the reservoir can easily be exposed to non-uniform incoming flows, affecting its wind-resistance performance. This paper presents a study on the aerostatic stability of such a bridge. Wind tunnel tests were first carried out to investigate the wind environment above a mountainous reservoir. The results show that the angle of attack and the wind speed along the bridge axis show obvious non-uniform characteristics, which is related to the inflow direction. When winds come from the south where the river is winding, the angle of attack varies along the span direction significantly. The finite element model for the bridge was established using ANSYS software, and effects of non-uniform wind loads on the aerostatic stability were computed. Non-uniform angle of attack and wind speed are unfavorable to the aerostatic stability of the bridge, especially the former. When the combined action of non-uniform angle of attack and wind speed is considered, the critical wind speed of aerostatic instability is further reduced. Moreover, the aerostatic stability of the bridge is closely related to the dam height.