• Title/Summary/Keyword: K-space

Search Result 26,710, Processing Time 0.066 seconds

TOWARD NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF COMPACT DIAGNOSTIC CORONAGRAPH ON ISS

  • Cho, Kyungsuk;Bong, Suchan;Choi, Seonghwan;Yang, Heesu;Kim, Jihun;Baek, Jihye;Park, Jongyeob;Lim, Eun-Kyung;Kim, Rok-Soon;Kim, Sujin;Kim, Yeon-Han;Park, Young-Deuk;Clarke, S.W.;Davila, J.M.;Gopalswamy, N.;Nakariakov, V.M.;Li, B.;Pinto, R.F.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.66.2-66.2
    • /
    • 2017
  • The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administrative (NASA) and install it on the International Space Station (ISS). The coronagraph is an externally occulted one stage coronagraph with a field of view from 2.5 to 15 solar radii. The observation wavelength is approximately 400 nm where strong Fraunhofer absorption lines from the photosphere are scattered by coronal electrons. Photometric filter observation around this band enables the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with the high time cadence (< 12 min) of corona images to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in 2017 August for the filter system and to perform a stratospheric balloon experiment in 2019 for the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g. coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

  • PDF

Observational performance of the KMTNet system

  • Lee, Chung-Uk;Kim, Seung-Lee;Cha, Sang-Mok;Lee, Yongseok;Kim, Dong-Jin;Park, Byeong-Gon;Lee, Dong-Joo;Koo, Jae-Rim;Hong, Kyeongsoo;Lee, Jae Woo;Ryu, Yoon-Hyun;Lim, Beomdu;Lim, Jin-Sun;Gho, Seung-Won;Kim, Min-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.55.2-55.2
    • /
    • 2015
  • 한국천문연구원에서는 2도${\times}$2도 시야의 1.6m 광시야 망원경과 $18k{\times}18k$ 모자이크 CCD 카메라로 이루어진 관측시스템을 남반구천문대 3곳에 설치하여 24시간 모니터링 관측이 가능한 Korea Microlensing Telescope Network(KMTNet)을 구축하고 있다. 망원경 1,2,3호기는 각각 칠레 CTIO, 남아공 SAAO, 호주 SSO 관측소에 2014년말 까지 성공적으로 설치 완료하였으며, 2015년 2월 현재 칠레와 남아공에는 연구용 18k CCD 카메라, 호주에는 시험관측용 4k CCD 카메라를 부착하여 시험관측을 수행중이다. 시험관측을 통해 KMTNet 시스템에서 가장 중요한 부분인 광시야 광학계가 요구사양을 만족함을 확인하였고, 과학연구 수행에 어려움이 없을 것으로 예상한다. 우리는 시험관측을 통해 얻어진 각각의 시스템 성능을 검토하고, 관측 후 파일전송, 전처리 및 자료 배포와 더불어 안정적인 측광성능 유지를 위한 시스템 운영 및 향후 계획에 대하여 발표한다.

  • PDF

Preliminary Thermal Analysis of NISS onboard NEXTSat-1

  • Lee, Dukhang;Moon, Bongkon;Park, Sung-Joon;Jeong, Woong-Seob;Suh, Jeong-Ki;Pyo, Jeonghyun;Park, Youngsik;Lee, Dae-Hee;Kim, Il-Joong;Park, Won-Kee;Ko, Kyeongyeon;Kim, Min-Gyu;Nam, Uk-Won;Park, Chan;Shin, Goo-Whan;Matsumoto, Toshio;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.108.1-108.1
    • /
    • 2014
  • Near-infrared Imaging Spectrometer for Star formation history (NISS), one of the main payloads of NEXTSat-1, is being developed by Korea Astronomy & Space Science Institute (KASI). Since NISS adopts an infrared reflecting optical system, its performance is highly sensitive to changes in system temperature. Therefore, it is important to figure out the temperature through thermal analysis and cooling tests in order to optimize the optical system design. We conducted thermal analysis of NISS for the recently updated model, and obtained steady state temperature of the optical system for two cases of satellite attitude: about 190 K for the Normal case and about 210 K for the Hot case. In this paper, we present thermal design of NISS and the preliminary thermal analysis results.

  • PDF

Korean Contribution to All-Sky Near-infrared Spectro-Photometric Survey

  • Jeong, Woong-Seob;Pyo, Jeonghyun;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Il-Joong;Kim, Minjin;Yang, Yujin;Ko, Jongwan;Song, Yong-Seon;Yu, Young Sam;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shim, Hyunjin;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.37.3-37.3
    • /
    • 2016
  • The SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is one of the candidates for the Astrophysical Small Explore mission of the NASA proposed together with KASI (PI Institute: Caltech). It will perform an all-sky near-infrared spectral survey to probe the origin of the Universe and water in the planetary systems and to explore the evolution of galaxies. The SPHEREx is designed to cover wide field of view of $3.5{\times}7deg$. as well as wide spectral range from 0.7 to $4.8{\mu}m$ by using four linear variable filters. The SPHEREx is under the Phase-A study to finalize the conceptual design and test plan of the instrument. The international partner, KASI will contribute to the SPHEREx in the hardware as well as the major science cases. The final selection will be made in the early 2017. Here, we report the current status of the SPHEREx mission.

  • PDF

Peliminary Performance Test for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Nam, Uk-Won;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Lee, Duk-Hang;Park, Jang-Hyun;Ka, Nung-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.37.4-37.4
    • /
    • 2010
  • KASI is developing the MIRIS (Multi-purpose IR Imaging System), as the main payload of Science and Technology Satellite-3 (STSAT-3). The Engineering Qualification Model (EQM) of the MIRIS has been recently fabricated, and Flight Model (FM) is now in final development stage. The system performance tests have been made mainly with EQM, and partly with FM in the laboratory, including opto-mechanics test, vibration test, thermal-vacuum test and passive cooling test down to 200K, using a thermal controlled vacuum chamber. Most of the system performance test results of the MIRIS are satisfied with the required specifications and its results were reflected in development of the FM with several revisions of the system design. In this paper, we present detailed system performance test procedures of the MIRIS and its results.

  • PDF

Recent Progress of MIRIS Development

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Nam, Uk-Won;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Lee, Duk-Hang;Park, Jang-Hyun;;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.23.4-23.4
    • /
    • 2011
  • MIRIS is the main payload of the Science and Technology Satellite-3 (STSAT-3). which is being developed by KASI for infrared survey observation of the Galactic plane at Paschen alpha wavelength. Wideband filters in I and H band will also be used to observe cosmic infrared background. The MIRIS will perform astronomical observations in the near-infrared wavelengths of 0.9~2 ${\mu}m$ using a 256 ${\times}$ 256 Teledyne PICNIC FPA sensor providing a 3.67 ${\times}$ 3.67 degree field of view with a pixel scale of 51.6 arcsec. The flight model of the MIRIS has been recently developed, The system performance tests have been made in the laboratory, including opto-mechanics test, vibration test, thermal vacuum test and passive cooling test down to 200K, using a thermally controlled vacuum chamber. Several focus tests showed good agreements compared to initial design parameters. Recent efforts are being concentrated to improve the system performances, particularly to reduce readout noise level in electronics. After assembly and integration into the satellite bus, the MIRIS will be launched in 2012.

  • PDF

Optical Monitoring Strategy for Avoiding Collisions of GEO Satellites with Close Approaching IGSO Objects

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Park, Maru;Park, Sun-Youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki;Park, Young-Sik;Jang, Hyun-Jung;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.411-417
    • /
    • 2015
  • Several optical monitoring strategies by a ground-based telescope to protect a Geostationary Earth Orbit (GEO) satellite from collisions with close approaching objects were investigated. Geostationary Transfer Orbit (GTO) objects, Inclined GeoSynchronous Orbit (IGSO) objects, and drifted GEO objects forced by natural perturbations are hazardous to operational GEO satellites regarding issues related to close approaches. The status of these objects was analyzed on the basis of their orbital characteristics in Two-Line Element (TLE) data from the Joint Space Operation Center (JSpOC). We confirmed the conjunction probability with all catalogued objects for the domestic operational GEO satellite, Communication, Ocean and Meteorological Satellite (COMS) using the Conjunction Analysis Tools by Analytical Graphics, Inc (AGI). The longitudinal drift rates of GeoSynchronous Orbit (GSO) objects were calculated, with an analytic method and they were confirmed using the Systems Tool Kit by AGI. The required monitoring area was determined from the expected drift duration and inclination of the simulated target. The optical monitoring strategy for the target area was analyzed through the orbit determination accuracy. For this purpose, the close approach of Russian satellite Raduga 1-7 to Korean COMS in 2011 was selected.