• Title/Summary/Keyword: K-space

Search Result 26,727, Processing Time 0.046 seconds

Near-Infrared Imaging Spectroscopic Survey in Space

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Song, Yong-Seon;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.54.3-54.3
    • /
    • 2015
  • To probe the star formation in local and early Universe, the NISS with a capability of imaging spectroscopy in the near-infrared is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design of the NISS with 15cm aperture was optimized to obtain a wide field of view (FoV) of $2deg.{\times}2deg.$ as well as a wide spectral coverage from 0.9 to $3.8{\mu}m$. The opto-mechanical structure was designed to be safe enough to endure in both the launching condition and the space environment. The dewar will operate $1k{\times}1k$ infrared sensor at 80K stage. The NISS will be launched in 2017 and explore the large areal near-infrared sky up to $200deg.^2$ in order to get both spatial and spectral information for astronomical objects. As an extension of the NISS, KASI is planning to participate in a new small space mission together with NASA. The promising candidate, SPHEREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is an all-sky survey satellite designed to reveal the origin of the Universe and water in the planetary systems and to explore the evolution of galaxies. Though the survey concept is similar to that of the NISS, the SPHEREx will perform the first near-infrared all-sky imaging spectroscopic survey with the wider spectral range from 0.7 to $5{\mu}m$ and the wider FoV of $3.5deg.{\times}7deg.$ Here, we report the current status of the NISS and introduce new mission for the near-infrared imaging spectroscopic survey.

  • PDF

Data Reduction Pipeline for the MIRIS Space Observation Camera

  • Pyo, Jeonghyun;Kim, Il-Joong;Park, Won-Kee;Jeong, Woong-Seob;Lee, Dae-Hee;Moon, Bongkon;Park, Youngsik;Park, Sung-Joon;Park, Kwijong;Lee, Duk-Hang;Nam, Uk-won;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.74-74
    • /
    • 2013
  • Multi-purpose Infra-Red Imaging System (MIRIS) is the main payload of the Science and Technology Satellite-3 (STSAT-3) to be launched in the late half of this year. For the Space Observation Camera (SOC) of MIRIS, we developed the data reduction pipeline with Python powered by Astropy, a community Python library for astronomy. The pipeline features the following functionalities: i) to retrieve the raw observation data from database and convert it to a FITS format, ii) to mask bad pixels, iii) to correct the non-linearity, iv) to differentiate the frames, v) to correct the flat-field, vi) to correct focal-plane distortion, vii) to improve the world coordinate system (WCS) information using known point-source catalog, and viii) to combine the sequentially taken frames. The pipeline is well modularized and has flexibility for later update. In this poster, we introduce the details of the pipeline's features and the future maintenance plan.

  • PDF

A Study on the Images and Preference of Lighting Space - Focusing on fashion Stores - (조명공간의 이미지 및 선호도 연구 - 패션 매장을 중심으로 -)

  • Seok, Hye-Jung;Han, Seung-Hee;Lee, Jong-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.3
    • /
    • pp.1-11
    • /
    • 2015
  • This study comparatively analyzed the images and preference of lighting space using the emotion-based technique in order to effectively use it in clothing shops and fashion marketing. In terms of color temperature for light sources, 2,800K of lamp color, 6,500K of daylight color and 4,200K of white color were used. For the assessment, sensory evaluation technique was used. Then, the study found the followings: In terms of the image of lighting space by light source, different images were observed by light source with significant difference by the evaluation category. For factor analysis by the evaluation category, 7 factors were extracted. Among them, evaluation on lighting space was influenced by the following three images: modern space, elegant space and classical space. In particular, the modern space comprised of the following adjectives had the biggest effect on the assessment of the image of lighting space ('refreshing,' 'transparent,' 'bluish,' 'bright' and 'non-classical') (primary evaluation 30.13%). According to assessment on the preference of lighting space, the respondents' most favorite lighting space was 4,200K while their least favorable one was 6,500K in terms of color temperature. In terms of preference by the image of lighting space, they didn't like 'non-elegant' and 'non-beige' images even though they had the images of modern space. Therefore, it was confirmed that beige and elegant space images have an effect on the preference of lighting space.

  • PDF

FIMS/SPEAR Far Ultraviolet Spectral Images of the Cygnus Loop

  • Seon, Kwang-Il;Han, Won-Yong;Nam, Uk-Won;Park, Jang-Hyun;Yuk, In-Soo;Lee, Dae-Hee;Min, Kyung-Wook;Ryu, Kwang-Sun;Shinn, Jong-Ho;Kim, Il-Joong;Edelstein, Jerry;Korpela, Eric;Sankrit, Ravi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.53.1-53.1
    • /
    • 2005
  • PDF

CIB Observational Plan with MIRIS

  • Jeong, Woong-Seob;Matsumoto, Toshio;Lee, Sung-Ho;Matsuura, Shuji;Ahn, Kyung-Jin;Ree, Chang-Hee;Lee, Hyung-Mok;Koo, Bon-Chul;Cha, Sang-Mok;Park, Sung-Joon;Jin, Ho;Han, Won-Yong;Park, Jang-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.33 no.2
    • /
    • pp.48.2-48.2
    • /
    • 2008
  • PDF

Proposed Science Programs for SPICA Near-Infrared Instrument

  • Jeong, Woong-Seob;Matsumoto, Toshio;Lee, Hyung-Mok;Koo, Bon-Chul;Im, Myung-Shin;Lee, Dae-Hee;Ree, Chang-Hee;Park, Young-Sik;Moon, Bong-Kon;Park, Sung-Joon;Pyo, Jeong-Hyun;Cha, Sang-Mok;SPICA-FPCTeam, SPICA-FPCTeam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.56.2-56.2
    • /
    • 2010
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation astronomical mission optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. Due to its high angular resolution and unprecedented sensitivity, SPICA will enable us to resolve many key issues in the present-day astronomy. As an international collaboration, KASI proposed the near-infrared instrument which is composed of two parts; (1) science observation with the capability of imaging and spectroscopy covering $0.7{\mu}m$ to $5{\mu}m$ (FPC-S) (2) fine guiding to stabilize and improve the attitude (FPC-G). Here, we introduce the science programs proposed for SPICA/FPC-S.

  • PDF

Construction of Korean Space Weather rediction Center: K-SRBL

  • Bong, Su-Chan;Kim, Yeon-Han;Cho, Kyung-Suk;Choi, Seong-Hwan;Park, Young-Deuk;Gary, Dale E.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.32.2-32.2
    • /
    • 2008
  • A major solar radio burst can disturb many kinds of radio instruments, including cellular phone, GPS, and radar. Korea Astronomy and Space Science Institute (KASI) is developing Korean Solar Radio Burst Locator (KSRBL) in collaboration with New Jersey Institute of Technology. KSRBL is a single dish radio spectrograph, which records the spectra of microwave (0.5 - 18 GHz) bursts with 1 MHz spectral resolution and 1 s time cadence, and locates their positions on the solar disk within 2 arcmin. Hardware manufacturing is almost completed including 4-channel digitizer/FPGA. The system is currently installed at Owens Valley Radio Observatory (OVRO), and test of the operation is in progress. It will be installed at KASI in 2009. We report current status and test results of KSRBL.

  • PDF

MINIMAL QUASI-F COVERS OF REALCOMPACT SPACES

  • Jeon, Young Ju;Kim, Chang Il
    • The Pure and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.329-337
    • /
    • 2016
  • In this paper, we show that every compactification, which is a quasi-F space, of a space X is a Wallman compactification and that for any compactification K of the space X, the minimal quasi-F cover QFK of K is also a Wallman compactification of the inverse image ${\Phi}_K^{-1}(X)$ of the space X under the covering map ${\Phi}_K:QFK{\rightarrow}K$. Using these, we show that for any space X, ${\beta}QFX=QF{\beta}{\upsilon}X$ and that a realcompact space X is a projective object in the category $Rcomp_{\sharp}$ of all realcompact spaces and their $z^{\sharp}$-irreducible maps if and only if X is a quasi-F space.