• Title/Summary/Keyword: K-mismatch

Search Result 896, Processing Time 0.029 seconds

Analysis of the Cancellation Performance of a linearization loop

  • Kang, Sang-Gee;Yi, Hui-Min;Hong, Sung-Yong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.183-187
    • /
    • 2003
  • The expression for the effects of an amplitude imbalance, a phase imbalance and a delay mismatch on the characteristics of a linearization loop in feedforward amplifiers is derived and analyzed. The simulation results are compared with the results obtained by means of using a commercial simulation tool and the exact agreement is reported.

  • PDF

Electrophoretic characterization of Hollow Titania Sphere for E-paper display

  • Lee, J.Y.;Kim, T.H.;Kwon, Y.K.;Choi, H.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.321-323
    • /
    • 2005
  • We report a microcapsule-based electronic ink display technique, containing hollow titania particles which were prepared via a complex coacervation method using gelatin and gum arabic. In order to reduce density mismatch between nanoparticels and dielectric medium, hollow titania particles were introduced. Microcapsules were then prepared using gelatin to improve the elasticity of the microcapsule wall and their electrophoretic characteristics were $investigated^1$

  • PDF

I/Q a Demodulator for WLAN Application (2.4GHz 무선랜용 I/Q 복조기 설계)

  • Park, Hyun-Woo;Jin, Zhejun;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.129-130
    • /
    • 2007
  • I/Q demodulator is designed using RC-CR quadrature divider with two balanced mixer for WLAN applications. The I/Q demodulator has low power dissipation, good I/Q mismatch, a good isolation and conversion loss. The measured results shows close agreement with the predicted performance.

  • PDF

Reactive Power Variation Method for Anti-islanding Using Digital Phase-Locked-Loop (DPLL을 이용한 능동적 단독운전방지를 위한 무효전력변동법)

  • Lee, Ki-Ok;Yu, Byung-Gu;Yu, Gwon-Jong;Choi, Ju-Yeop;Choy, Ick
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.64-69
    • /
    • 2008
  • As the grid-connected photovoltaic power conditioning systems (PVPCS) are installed in many residential areas, these have raised potential problems of network protection on electrical power system. One of the numerous problems is an Islanding phenomenon. There has been an argument that it may be a non-issue in practice because the probability of islanding is extremely low. However, there are three counter-arguments: First, the low probability of islanding is based on the assumption of 100% power matching between the PVPCS and the islanded local loads. In fact, an islanding can be easily formed even without 100% power matching (the power mismatch could be up to 30% if only traditional protections are used, e.g. under/over voltage/frequency). The 30% power-mismatch condition will drastically increase the islanding probability. Second, even with a larger power mismatch, the time for voltage or frequency to deviate sufficiently to cause a trip, plus the time required to execute a trip (particularly if conventional switchgear is required to operate), can easily be greater than the typical re-close time on the distribution circuit. Third, the low-probability argument is based on the study of PVPCS. Especially, if the output power of PVPCS equals to power consumption of local loads, it is very difficult for the PVPCS to sustain the voltage and frequency in an islanding. Unintentional islanding of PVPCS may result in power-quality issues, interference to grid-protection devices, equipment damage, and even personnel safety hazards. Therefore the verification of anti-islanding performance is strongly needed. In this paper, improved RPV method is proposed through considering power quality and anti-islanding capacity of grid-connected single-phase PVPCS in IEEE Std 1547 ("Standard for Interconnecting Distributed Resources to Electric Power Systems"). And the simulation results are verified.

Optimization of a microarray for fission yeast

  • Kim, Dong-Uk;Lee, Minho;Han, Sangjo;Nam, Miyoung;Lee, Sol;Lee, Jaewoong;Woo, Jihye;Kim, Dongsup;Hoe, Kwang-Lae
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.28.1-28.9
    • /
    • 2019
  • Bar-code (tag) microarrays of yeast gene-deletion collections facilitate the systematic identification of genes required for growth in any condition of interest. Anti-sense strands of amplified bar-codes hybridize with ~10,000 (5,000 each for up-and down-tags) different kinds of sense-strand probes on an array. In this study, we optimized the hybridization processes of an array for fission yeast. Compared to the first version of the array (11 ㎛, 100K) consisting of three sectors with probe pairs (perfect match and mismatch), the second version (11 ㎛, 48K) could represent ~10,000 up-/ down-tags in quadruplicate along with 1,508 negative controls in quadruplicate and a single set of 1,000 unique negative controls at random dispersed positions without mismatch pairs. For PCR, the optimal annealing temperature (maximizing yield and minimizing extra bands) was 58℃ for both tags. Intriguingly, up-tags required 3× higher amounts of blocking oligonucleotides than down-tags. A 1:1 mix ratio between up- and down-tags was satisfactory. A lower temperature (25℃) was optimal for cultivation instead of a normal temperature (30℃) because of extra temperature-sensitive mutants in a subset of the deletion library. Activation of frozen pooled cells for >1 day showed better resolution of intensity than no activation. A tag intensity analysis showed that tag(s) of 4,316 of the 4,526 strains tested were represented at least once; 3,706 strains were represented by both tags, 4,072 strains by up-tags only, and 3,950 strains by down-tags only. The results indicate that this microarray will be a powerful analytical platform for elucidating currently unknown gene functions.

An Islanding Microgrid Power Sharing Approach Using Adaptive Virtual Impedance control scheme

  • Hoang, Van-Tuan;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.315-316
    • /
    • 2016
  • This paper proposes an enhanced distributed generation (DG) unit with an adaptive virtual impedance control approachin order to address the inaccurate reactive power sharing problems. The proposed method can adaptively regulate the DG unit thanks to the equivalent impedance, andthe effect of the mismatch in feeder impedance is compensatedto share the reactive power accurately.The proposed control strategy can be implemented directly without any requirement of pre-knowledge of the feeder impedances. Simulations are performed to validate the effectiveness of the proposed control approach.

  • PDF

Feature Compensation Combining SNR-Dependent Feature Reconstruction and Class Histogram Equalization

  • Suh, Young-Joo;Kim, Hoi-Rin
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.753-755
    • /
    • 2008
  • In this letter, we propose a new histogram equalization technique for feature compensation in speech recognition under noisy environments. The proposed approach combines a signal-to-noise-ratio-dependent feature reconstruction method and the class histogram equalization technique to effectively reduce the acoustic mismatch present in noisy speech features. Experimental results from the Aurora 2 task confirm the superiority of the proposed approach for acoustic feature compensation.

  • PDF

Access to Database Using List Comprehension (리스트 컴프리헨션을 이용한 데이터베이스 접근)

  • Park, Kyung-Soon;Woo, Gyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11b
    • /
    • pp.655-658
    • /
    • 2003
  • 기존의 데이터베이스 응용 프로그램을 작성할 경우에 질의 언어와 개발 언어간의 이중 언어 정의 문제(impedance mismatch)가 발생한다. 이를 해결하기 위한 한가지 방법으로 본 논문에서는 Haskell의 리스트 컴프리헨션(list comprehension)을 이용한 데이터베이스 접근을 제안한다. 이 방식을 이용할 경우 문법 체계가 명확해 진다는 장점과 연속적인 집계연산자(aggregate operator)를 사용할 수 있다는 장점이 있다. 또한 앞에서 지적한 이중 언어 정의 문제를 해결할 수 있다.

  • PDF

Effect of Si-doping on the luminescence properties of InGaN/GaN green LED with graded short-period superlattice

  • Cho, Il-Wook;Lee, Dong Hyun;Ryu, Mee-Yi;Kim, Jin Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.280.1-280.1
    • /
    • 2016
  • Generally InGaN/GaN green light emitting diode (LED) exhibits the low quantum efficiency (QE) due to the large lattice mismatch between InGaN and GaN. The QE of InGaN-based multiple quantum wells (MQWs) is drastically decreased when an emission wavelength shifts from blue to green wavelength, so called "green gap". The "green gap" has been explained by quantum confined Stark effect (QCSE) caused by a large lattice mismatch. In order to improve the QE of green LED, undoped graded short-period InGaN/GaN superlattice (GSL) and Si-doped GSL (SiGSL) structures below the 5-period InGaN/GaN MQWs were grown on the patterned sapphire substrates. The luminescence properties of InGaN/GaN green LEDs have been investigated by using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The PL intensity of SiGSL sample measured at 10 K shows stronger about 1.3 times compared to that of undoped GSL sample, and the PL peak wavelength at 10 K appears at 532 and 525 nm for SiGSL and undoped GSL, respectively. Furthermore, the PL decay of SiGSL measured at 10 K becomes faster than that of undoped GSL. The faster decay for SiGSL is attributed to the increased wavefunction overlap between electron and hole due to the screening of piezoelectric field by doped carriers. These PL and TRPL results indicate that the QE of InGaN/GaN green LED with GSL structure can be improved by Si-doping.

  • PDF