• 제목/요약/키워드: K-means clustering technique

검색결과 151건 처리시간 0.031초

Delineation of Rice Productivity Projected via Integration of a Crop Model with Geostationary Satellite Imagery in North Korea

  • Ng, Chi Tim;Ko, Jonghan;Yeom, Jong-min;Jeong, Seungtaek;Jeong, Gwanyong;Choi, Myungin
    • 대한원격탐사학회지
    • /
    • 제35권1호
    • /
    • pp.57-81
    • /
    • 2019
  • Satellite images can be integrated into a crop model to strengthen the advantages of each technique for crop monitoring and to compensate for weaknesses of each other, which can be systematically applied for monitoring inaccessible croplands. The objective of this study was to outline the productivity of paddy rice based on simulation of the yield of all paddy fields in North Korea, using a grid crop model combined with optical satellite imagery. The grid GRAMI-rice model was used to simulate paddy rice yields for inaccessible North Korea based on the bidirectional reflectance distribution function-adjusted vegetation indices (VIs) and the solar insolation. VIs and solar insolation for the model simulation were obtained from the Geostationary Ocean Color Imager (GOCI) and the Meteorological Imager (MI) sensors of the Communication Ocean and Meteorological Satellite (COMS). Reanalysis data of air temperature were achieved from the Korea Local Analysis and Prediction System (KLAPS). Study results showed that the yields of paddy rice were reproduced with a statistically significant range of accuracy. The regional characteristics of crops for all of the sites in North Korea were successfully defined into four clusters through a spatial analysis using the K-means clustering approach. The current study has demonstrated the potential effectiveness of characterization of crop productivity based on incorporation of a crop model with satellite images, which is a proven consistent technique for monitoring of crop productivity in inaccessible regions.

AREA 활용 전력수요 단기 예측 (Short-term Forecasting of Power Demand based on AREA)

  • 권세혁;오현승
    • 산업경영시스템학회지
    • /
    • 제39권1호
    • /
    • pp.25-30
    • /
    • 2016
  • It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.

대표 속성을 이용한 최적 연관 이웃 마이닝 (Optimal Associative Neighborhood Mining using Representative Attribute)

  • 정경용
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.50-57
    • /
    • 2006
  • 최근 정보 기술의 발전에 따라 다양하고 폭넓은 정보들이 디지털 형태로 빠르게 생산 및 배포되고 있다. 사용자가 이러한 정보과잉 속에서 자신이 원하는 정보를 단시간 내에 검색하는 것은 그리 쉬운 일이 아니다. 따라서 유비쿼터스 상거래에서 사용자가 정보를 효율적으로 이용할 수 있도록 제어하고 필터링하는 일을 도와주는 개인화된 추천 시스템이 등장하였으며, 더 나아가 사용자가 원하는 아이템을 예측하고 추천해주고 있으며 이를 위해 협력적 필터링을 적용하고 있다. 이는 사용자의 성향에 맞는 아이템을 예측하고 추천하기 위하여 비슷한 선호도를 가지는 사용자들간의 유사도 가중치를 계산한다. 본 연구는 정보의 속성에 대한 사용자의 선호도를 고려하지 않은 문제를 개선하기 위하여 연관 이웃 마이닝을 사용하여 대표속성에 대한 연관 사용자의 선호도를 협력적 필터링에 반영하였다. 연관 이웃 마이닝은 선호도에 가장 크게 영향을 미치는 속성을 추출하여 유사한 성향을 가진 연관 사용자를 군집한다. 제안된 방법은 사용자가 아이템에 대해서 평가한 MovieLens 데이터 집합을 대상으로 평가되었으며, 기존의 nearest neighbor model과 K-means 군집보다 그 성능이 우수함을 보인다.

비디오 감시시스템을 위한 영역 기반의 움직이는 물체 분할 (Region-Based Moving Object Segmentation for Video Monitoring System)

  • 이경미;김종배;이창우;김항준
    • 전자공학회논문지CI
    • /
    • 제40권1호
    • /
    • pp.30-38
    • /
    • 2003
  • 본 논문은 비디오 영상에서 움직이는 물체를 분할하는 방법을 제안한다. 물체들의 크기가 작거나 서로 겹쳐있을 경우(occlusion), 또는 잡음이 많은 경우에도 안정적인 이 방법은 움직임 검출(motion detection)과 움직임 분할(motion segmentation) 두 단계로 구성되어 있다. 움직임 검출을 하기 위하여 인접 영상간의 차영상(difference image) 분석을 통해 움직임이 있는 부분을 추출하며, 이때 적응적 임계치 방법을 이용하여 빛의 변화나 노이즈가 포함된 환경에서도 안정적으로 추출한다. 움직임 분할 단계에서는 움직임이 검출된 부분을 초기영역으로 분할 한 뒤, 이 영역들의 모션정보에 따라 이웃 한 영역들을 병합함으로써 독립적으로 움직이는 물체를 분할한다. 이러한 방법은 검출된 영역에 대해서만 움직임 분할을 함으로 많은 계산효과를 얻을 수 있으며 실제 도로영상에서 제안된 방법을 실험해본 결과 비디오 감시시스템에 적합함을 알 수 있었다.

종합병원 간호단위의 간호사 관계 네트워크 연구 (Relationship networks among nurses in acute nursing care units)

  • 박승미;박은준
    • 한국간호교육학회지
    • /
    • 제30권2호
    • /
    • pp.182-191
    • /
    • 2024
  • Purpose: The purpose of this study was to explore the characteristics of social networks among registered nurses in acute nursing care units. Methods: This study used a survey design. Four nursing units from two acute hospitals were selected using a convenience method, and 83 nurses from those nursing units participated in the study in July 2022. The positive influences among nurses included friendship, collaboration, advice, and referent networks, and the negative influences included avoidance and bullying networks. Using the NetMiner program, the k-means clustering technique was applied to create groups of nodes with similar characteristics. The general characteristics of the participants were analyzed by mean, standard deviation, frequency, and ANOVA or chi-squared test. Results: As a result of dividing the 83 nurse participants into four clusters, positive influencers, silent peers, unwelcome peers, and active bullies were identified. Positive influence group nurses were frequently mentioned in the friendship, collaboration, advice, and referent networks. On the other hand, nurses in the unwelcome group and the active bullying group were frequently mentioned in the avoidance and bullying networks. Conclusion: Social networks that have a positive or negative impact on nursing performance are created through different relationships between nurses. Nurse managers can use the findings to create a more supportive and collaborative environment. Further research is needed to develop intervention programs to improve interactions and relationships between fellow nurses.

기술과학 분야 학술문헌에 대한 학습집합 반자동 구축 및 자동 분류 통합 연구 (Semi-automatic Construction of Learning Set and Integration of Automatic Classification for Academic Literature in Technical Sciences)

  • 김선우;고건우;최원준;정희석;윤화묵;최성필
    • 정보관리학회지
    • /
    • 제35권4호
    • /
    • pp.141-164
    • /
    • 2018
  • 최근 학술문헌의 양이 급증하고, 융복합적인 연구가 활발히 이뤄지면서 연구자들은 선행 연구에 대한 동향 분석에 어려움을 겪고 있다. 이를 해결하기 위해 우선적으로 학술논문 단위의 분류 정보가 필요하지만 국내에는 이러한 정보가 제공되는 학술 데이터베이스가 존재하지 않는다. 이에 본 연구에서는 국내 학술문헌에 대해 다중 분류가 가능한 자동 분류 시스템을 제안한다. 먼저 한국어로 기술된 기술과학 분야의 학술문헌을 수집하고 K-Means 클러스터링 기법을 활용하여 DDC 600번 대의 중분류에 맞게 매핑하여 다중 분류가 가능한 학습집합을 구축하였다. 학습집합 구축 결과, 메타데이터가 존재하지 않는 값을 제외한 총 63,915건의 한국어 기술과학 분야의 자동 분류 학습집합이 구축되었다. 이를 활용하여 심층학습 기반의 학술문헌 자동 분류 엔진을 구현하고 학습하였다. 객관적인 검증을 위해 수작업 구축한 실험집합을 통한 실험 결과, 다중 분류에 대해 78.32%의 정확도와 72.45%의 F1 성능을 얻었다.

머신러닝 기반의 신약 재창출 관련 연구 동향 분석 (Analysis of Research Trends Related to drug Repositioning Based on Machine Learning)

  • 유소연;임규건
    • 경영정보학연구
    • /
    • 제24권1호
    • /
    • pp.21-37
    • /
    • 2022
  • 신약을 개발하는 한 가지 방법의 하나인 신약 재창출(Drug Repositioning)은 이미 사람들에게 사용할 수 있도록 승인된 약물들이 다른 용도로 사용되도록 하여 새로운 적응증을 발견하는 유용한 방법이다. 최근에는 머신러닝 기술의 발달로 방대한 생물학적 정보를 분석하여 신약 개발에 활용하는 경우가 증가하고 있다. 신약 재창출에 머신러닝 기술을 활용하면 효과적인 치료법을 신속하게 찾아내는 데 도움을 줄 것이다. 현재 심각한 급성 호흡기 증후군인 코로나바이러스(COVID-19)에 의한 신종 질병으로 전 세계가 힘든 시간을 보내고 있다. 이미 임상적으로 승인된 약물의 용도를 변경하는 신약 재창출은 COVID-19 환자를 치료하기 위한 치료제의 대안이 될 수 있다. 본 연구는 머신러닝 기법을 활용하여 신약 재창출 분야에 대한 연구 동향을 살펴보고자 한다. Pub Med에서 웹 스크래핑 기법을 사용하여 'Drug Repositioning'이라는 키워드로 총 4,821건의 논문을 수집하였다. 데이터 전처리 후, 4,419건의 논문을 대상으로 빈도분석, LDA 기반 토픽모델링, Random Forest 분류 분석 및 예측 성능평가를 수행하였다. Word2vec 모델을 기반으로 연관어를 분석하였고, PCA 차원 축소 후 K-Means 군집화하여 레이블을 생성한 후, t-SNE 알고리즘을 이용하여 논문이 형성하고 있는 그룹을 시각화하고, LDA 결과에 계층적 군집화를 적용하여 히트맵으로 시각화하였다. 본 연구는 신약 재창출과 관련된 연구 주제가 무엇인지를 파악하고, 머신러닝 알고리즘을 사용하여 대량의 문헌에서 의미 있는 주제를 도출하고 시각화하는 방법을 제시하였다. 향후 신약 재창출 분야의 연구나 개발 전략을 수립하기 위한 기초자료로 활용되는 데 도움을 줄 것이라고 기대한다.

퇴적암 유래 농경지 토양에 대한 카테나 해석 (Interpretation of Soil Catena for Agricultural Soils derived from Sedimentary Rocks)

  • 손연규;이동성;김근태;현병근;전혜원;전상호
    • 한국지리정보학회지
    • /
    • 제20권4호
    • /
    • pp.1-14
    • /
    • 2017
  • 본 연구에서는 퇴적암 유래 농경지 토양의 카테나의 정량적, 객관적인 해석을 위해 세부정밀토양도(축적 1:5,000)의 속성자료 중 토양통자료를 이용하여 지리정보시스템(ArcGIS, ESRI, US)과 R 통계분석프로그램을 이용하여 분석하였다. 분석에 사용된 토양통의 인접한 토양통 길이 산정을 위해 GIS 프로그램의 Buffer 기능을 이용하여 각 토양통에 폭 1m의 buffer을 형성하고 인접한 토양통들의 buffer 면적과 이를 이용하여 길이를 산출하였다. R 통계분석프로그램을 이용하여 각각의 토양통별로 인접한 토양통의 면적을 비율로 환산하고, 그 값을 기준으로 입체군집기준(Cubic Clustering Criterion)을 이용해 군집의 개수를 선정하였다. 군집의 수를 선정 후 인접 토양통의 비율을 이용해 군집분석을 수행하여 퇴적암 유래 농경지 토양들의 유사성 분석을 시도하였다. 군집분석 결과 퇴적암 지대별로 암석의 종류에 따라 입경분포가 다르게 나타나 사양질 토양은 주로 사암 모재, 식양질 토양은 혈암 모재, 미사식양질 내지 식질의 토양은 석회암 모재로 구별되어, 석회암 < 혈암 < 사암의 순이었다. 한편, 혈암유래 농경지 토양은 적색혈암과 회색혈암으로 구분되고, 적색혈암은 사양질과 식양질, 회색혈암은 식양질과 미사식양질이 주로 분포하는 것으로 나타났다. 토양연접군에 대한 정량적인 해석을 의미하며, 이러한 분석방법들을 통한 해석으로 토양통들의 입경분포, 특히 점토함량에 따른 연관성 분석을 할 수 있었고, 분포위치와 모암에 대한 연관성에 대해서는 보다 심도있는 연구가 필요할 것으로 보여진다.

문헌정보학과 학생의 직장으로서의 도서관·정보센터 이미지 분석 (Study about Library and Information Center's Image of Library and Information Science Students as Workplace)

  • 조재인;이지원
    • 한국문헌정보학회지
    • /
    • 제50권3호
    • /
    • pp.113-132
    • /
    • 2016
  • 소비자에게 형성된 심상 분석을 통해 마케팅 전략을 수립하는데 주로 활용되고 있는 포지셔닝(Positioning) 기법은 공공시설, 기업, 대학이 공중에게 주는 이미지 분석을 비롯해 다양한 영역에서 활용되고 있다. 본 연구는 문헌정보학과 학생이 직장으로서 도서관 정보센터에 대하여 가지고 있는 이미지를 포지셔닝 기법을 통하여 분석하였다. 분석 결과, 학생들은 공공, 대학, 학교, 국가도서관을 유사한 이미지의 직장으로 인식하는 반면, 포털과 전문도서관은 이들과는 이질적인 진출처로 인식하고 있었으며, 직무에 있어서는 이용자봉사업무와 기술업무, 문화프로그램 업무를 각각 상이한 직무 군집으로 인식하고 있는 것으로 나타났다. 한편, 만족스러운 업무와 고용안정성이라는 이미지는 국가도서관과 공공도서관이 가장 크게 나타났으며, 보수가 가장 높을 것으로 기대되는 곳은 포털 업체, 성장가능성이 가장 높을 것으로 기대되는 곳은 전문도서관으로 포지셔닝되었다. 한편, 학생들이 가장 중요하게 생각하는 직장선택준거는 고용안정성으로 나타났으며, 가장 선호하는 직장으로는 공공도서관이 선택되었는데, 이러한 공공도서관 선호 집중 현상은 수도권대학보다는 지방대학 학생들에게 더욱 강하게 나타났다.

텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석 (A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis)

  • 감미아;송민
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.53-77
    • /
    • 2012
  • 본 연구는 경향신문, 한겨레, 동아일보 세 개의 신문기사가 가지고 있는 내용 및 논조에 어떠한 차이가 있는지를 객관적인 데이터를 통해 제시하고자 시행되었다. 본 연구는 텍스트 마이닝 기법을 활용하여 신문기사의 키워드 단순빈도 분석과 Clustering, Classification 결과를 분석하여 제시하였으며, 경제, 문화 국제, 사회, 정치 및 사설 분야에서의 신문사 간 차이점을 분석하고자 하였다. 신문기사의 문단을 분석단위로 하여 각 신문사의 특성을 파악하였고, 키워드 네트워크로 키워드들 간의 관계를 시각화하여 신문사별 특성을 객관적으로 볼 수 있도록 제시하였다. 신문기사의 수집은 신문기사 데이터베이스 시스템인 KINDS에서 2008년부터 2012년까지 해당 주제로 주제어 검색을 하여 총 3,026개의 수집을 하였다. 수집된 신문기사들은 불용어 제거와 형태소 분석을 위해 Java로 구현된 Lucene Korean 모듈을 이용하여 자연어 처리를 하였다. 신문기사의 내용 및 논조를 파악하기 위해 경향신문, 한겨레, 동아일보가 정해진 기간 내에 일어난 특정 사건에 대해 언급하는 단어의 빈도 상위 10위를 제시하여 분석하였고, 키워드들 간 코사인 유사도를 분석하여 네트워크 지도를 만들었으며 단어들의 네트워크를 통해 Clustering 결과를 분석하였다. 신문사들마다의 논조를 확인하기 위해 Supervised Learning 기법을 활용하여 각각의 논조에 대해 분류하였으며, 마지막으로는 분류 성능 평가를 위해 정확률과 재현률, F-value를 측정하여 제시하였다. 본 연구를 통해 문화 전반, 경제 전반, 정치분야의 통합진보당 이슈에 대한 신문기사들에 전반적인 내용과 논조에 차이를 보이고 있음을 알 수 있었고, 사회분야의 4대강 사업에 대한 긍정-부정 논조에 차이가 있음을 발견할 수 있었다. 본 연구는 지금까지 연구되어왔던 한글 신문기사의 코딩 및 담화분석 방법에서 벗어나, 텍스트 마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있다. 향후 지속적인 연구를 통해 분류 성능을 보다 높인다면, 사람들이 뉴스를 접할 때 그 뉴스의 특정 논조 성향에 대해 우선적으로 파악하여 객관성을 유지한 채 정보에 접근할 수 있도록 도와주는 신뢰성 있는 툴을 만들 수 있을 것이라 기대한다.