• Title/Summary/Keyword: K-means clustering technique

Search Result 151, Processing Time 0.026 seconds

Nucleus Segmentation and Recognition of Uterine Cervical Pop-Smears using Region Growing Technique and Backpropagation Algorithm (영역 확장 기법과 오류 역전파 알고리즘을 이용한 자궁경부 세포진 영역 분할 및 인식)

  • Kim Kwang-Baek;Kim Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1153-1158
    • /
    • 2006
  • The classification of the background and cell areas is very important research area because of the ambiguous boundary. In this paper, the region of cell is extracted from an image of uterine cervical cytodiagnosis using the region growing method that increases the region of interest based on similarity between pixels. Segmented image from background and cell areas is binarized using a threshold value. And then 8-directional tracking algorithm for contour lines is applied to extract the cell area. First, the extracted nucleus is transformed to RGB color that is the original image. Second, the K-means clustering algorithm is employed to classify RGB pixels to the R, G, and B channels, respectively. Third, the Hue information of nucleus is extracted from the HSI models that is the transformation of the clustering values in R, G, and B channels. The backpropagation algorithm is employed to classify and identify the normal or abnormal nucleus.

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission

  • Wu, Jingyu;Lan, Chengming;Xian, Guijun;Li, Hui
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.421-433
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable.

A Study on Clustering of Core Competencies to Deploy in and Develop Courseworks for New Digital Technology (카드소팅을 활용한 디지털 신기술 과정 핵심역량 군집화에 관한 연구)

  • Ji-Woon Lee;Ho Lee;Joung-Huem Kwon
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.565-572
    • /
    • 2022
  • Card sorting is a useful data collection method for understanding users' perceptions of relationships between items. In general, card sorting is an intuitive and cost-effective technique that is very useful for user research and evaluation. In this study, the core competencies of each field were used as competency cards used in the next stage of card sorting for course development, and the clustering results were derived by applying the K-means algorithm to cluster the results. As a result of card sorting, competency clustering for core competencies for each occupation in each field was verified based on Participant-Centric Analysis (PCA). For the number of core competency cards for each occupation, the number of participants who agreed appropriately for clustering and the degree of card similarity were derived compared to the number of sorting participants.

Clustering-based Hierarchical Scene Structure Construction for Movie Videos (영화 비디오를 위한 클러스터링 기반의 계층적 장면 구조 구축)

  • Choi, Ick-Won;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.529-542
    • /
    • 2000
  • Recent years, the use of multimedia information is rapidly increasing, and the video media is the most rising one than any others, and this field Integrates all the media into a single data stream. Though the availability of digital video is raised largely, it is very difficult for users to make the effective video access, due to its length and unstructured video format. Thus, the minimal interaction of users and the explicit definition of video structure is a key requirement in the lately developing image and video management systems. This paper defines the terms and hierarchical video structure, and presents the system, which construct the clustering-based video hierarchy, which facilitate users by browsing the summary and do a random access to the video content. Instead of using a single feature and domain-specific thresholds, we use multiple features that have complementary relationship for each other and clustering-based methods that use normalization so as to interact with users minimally. The stage of shot boundary detection extracts multiple features, performs the adaptive filtering process for each features to enhance the performance by eliminating the false factors, and does k-means clustering with two classes. The shot list of a result after the proposed procedure is represented as the video hierarchy by the intelligent unsupervised clustering technique. We experimented the static and the dynamic movie videos that represent characteristics of various video types. In the result of shot boundary detection, we had almost more than 95% good performance, and had also rood result in the video hierarchy.

  • PDF

Development of newly recruited privates on-the-job Training Achievements Group Classification Model (신병 주특기교육 성취집단 예측모형 개발)

  • Kwak, Ki-Hyo;Suh, Yong-Moo
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.2
    • /
    • pp.101-113
    • /
    • 2007
  • The period of military personnel service will be phased down by 2014 according to 'The law of National Defense Reformation' issued by the Ministry of National Defense. For this reason, the ROK army provides discrimination education to 'newly recruited privates' for more effective individual performance in the on-the-job training. For the training to be more effective, it would be essential to predict the degree of achievements by new privates in the training. Thus, we used data mining techniques to develop a classification model which classifies the new privates into one of two achievements groups, so that different skills of education are applied to each group. The target variable for this model is a binary variable, whose value can be either 'a group of general control' or 'a group of special control'. We developed four pure classification models using Neural Network, Decision Tree, Support Vector Machine and Naive Bayesian. We also built four hybrid models, each of which combines k-means clustering algorithm with one of these four mining technique. Experimental results demonstrated that the highest performance model was the hybrid model of k-means and Neural Network. We expect that various military education programs could be supported by these classification models for better educational performance.

Intelligent Multi-Agent Distributed Platform based on Dynamic Object Group Management using Fk-means (Fk means를 이용한 동적객체그룹관리기반 지능형 멀티 에이전트 분산플랫폼)

  • Lee, Jae-wan;Na, Hye-Young;Mateo, Romeo Mark A.
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.101-110
    • /
    • 2009
  • Multi-agent systems are mostly used to integrate the intelligent and distributed approaches to various systems for effective sharing of resources and dynamic system reconfigurations. Object replication is usually used to implement fault tolerance and solve the problem of unexpected failures to the system. This paper presents the intelligent multi-agent distributed platform based on the dynamic object group management and proposes an object search technique based on the proposed filtered k-means (Fk-means). We propose Fk-means for the search mechanism to find alternative objects in the event of object failures and transparently reconnect client to the object. The filtering range of Fk-means value is set only to include relevant objects within the group to perform the search method efficiently. The simulation result shows that the proposed mechanism provides fast and accurate search for the distributed object groups.

  • PDF

Analysis Process based on Modify K-means for Efficiency Improvement of Electric Power Data Pattern Detection (전력데이터 패턴 추출의 효율성 향상을 위한 변형된 K-means 기반의 분석 프로세스)

  • Jung, Se Hoon;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo;Park, Myung Hye;Kim, Young Hyun;Lee, Seung Bae;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1960-1969
    • /
    • 2017
  • There have been ongoing researches to identify and analyze the patterns of electric power IoT data inside sensor nodes to supplement the stable supply of power and the efficiency of energy consumption. This study set out to propose an analysis process for electric power IoT data with the K-means algorithm, which is an unsupervised learning technique rather than a supervised one. There are a couple of problems with the old K-means algorithm, and one of them is the selection of cluster number K in a heuristic or random method. That approach is proper for the age of standardized data. The investigator proposed an analysis process of selecting an automated cluster number K through principal component analysis and the space division of normal distribution and incorporated it into electric power IoT data. The performance evaluation results show that it recorded a higher level of performance than the old algorithm in the cluster classification and analysis of pitches and rolls included in the communication bodies of utility poles.

A Study on the Unsupervised Classification of Hyperion and ETM+ Data Using Spectral Angle and Unit Vector

  • Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • Unsupervised classification is an important area of research in image processing because supervised classification has the disadvantages such as long task-training time and high cost and low objectivity in training information. This paper focuses on unsupervised classification, which can extract ground object information with the minimum 'Spectral Angle Distance' operation on be behalf of 'Spectral Euclidian Distance' in the clustering process. Unlike previous studies, our algorithm uses the unit vector, not the spectral distance, to compute the cluster mean, and the Single-Pass algorithm automatically determines the seed points. Atmospheric correction for more accurate results was adapted on the Hyperion data and the results were analyzed. We applied the algorithm to the Hyperion and ETM+ data and compared the results with K-Means and the former USAM algorithm. From the result, USAM classified the water and dark forest area well and gave more accurate results than K-Means, so we believe that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but hyperspectral images. And also the unit vector can be an efficient technique for characterizing the Remote Sensing data.

  • PDF

Food Recipe Clustering Model from the User's Perspective (사용자 관점에서의 음식 레시피 분류 모델에 관한 연구)

  • Lee, Woo-Hang;Choi, Soo-Yeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1441-1446
    • /
    • 2022
  • Modern people can access various information about food recipes very easily on the Internet or social media. As the supply of food recipes increases, it is difficult to find a suitable recipe for each user in the overflowing information. As such, the need to provide information by reflecting users' requirements has increased, and research related to food recipes and cooking recommendations is becoming active. In addition, the Internet, video, and application markets using this are also rapidly activating. In this study, in order to classify recipes from the user's perspective of food recipe users, the user's review data was applied with the k-mean clustering technique, which is unsupervised learning, and a "food recipe classification model" was derived. As a result, it was classified into a total of 25 clusters including information needed by many users, such as specific purposes and cooking stages.

A preliminary study on seabed classification using a scientific echosounder

  • FAJARYANTI, Rina;KANG, Myounghee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.1
    • /
    • pp.39-49
    • /
    • 2019
  • Acoustics are increasingly regarded as a remote-sensing tool that provides the basis for classifying and mapping ocean resources including seabed classification. It has long been understood that details about the character of the seabed (roughness, sediment type, grain-size distribution, porosity, and material density) are embedded in the acoustical echoes from the seabed. This study developed a sophisticated yet easy-to-use technique to discriminate seabed characteristics using a split beam echosounder. Acoustic survey was conducted in Tongyeong waters, South Korea in June 2018, and the verification of acoustic seabed classification was made by the Van Veen grab sampler. The acoustic scattering signals extracted the seabed hardness and roughness components as well as various seabed features. The seabed features were selected using the principal component analysis, and the seabed classification was performed by the K-means clustering. As a result, three seabed types such as sand, mud, and shell were discriminated. This preliminary study presented feasible application of a sounder to classify the seabed substrates. It can be further developed for characterizing marine habitats on a variety of spatial scales and studying the ecological characteristic of fishes near the habitats.