DOI QR코드

DOI QR Code

Food Recipe Clustering Model from the User's Perspective

사용자 관점에서의 음식 레시피 분류 모델에 관한 연구

  • Lee, Woo-Hang (Computer & Information Technology, Korea University Graduate School) ;
  • Choi, Soo-Yeun (Computer & Information Technology, Korea University Graduate School)
  • Received : 2022.09.12
  • Accepted : 2022.09.17
  • Published : 2022.10.31

Abstract

Modern people can access various information about food recipes very easily on the Internet or social media. As the supply of food recipes increases, it is difficult to find a suitable recipe for each user in the overflowing information. As such, the need to provide information by reflecting users' requirements has increased, and research related to food recipes and cooking recommendations is becoming active. In addition, the Internet, video, and application markets using this are also rapidly activating. In this study, in order to classify recipes from the user's perspective of food recipe users, the user's review data was applied with the k-mean clustering technique, which is unsupervised learning, and a "food recipe classification model" was derived. As a result, it was classified into a total of 25 clusters including information needed by many users, such as specific purposes and cooking stages.

현대인들은 음식 레시피에 대한 다양한 정보들을 인터넷이나 소셜 미디어 등에서 매우 쉽게 접할 수 있게 되었다. 음식 레시피를 제공하는 공급량이 많아지면서 범람하는 정보 안에서 사용자들이 각자에 맞는 레시피를 찾기에는 수고로움이 따르게 된다. 이처럼 사용자들의 요구사항을 반영하여 정보를 제공할 필요성이 높아졌고, 음식 레시피와 요리 추천에 관련 연구가 활발해지고 있다. 또한, 이를 활용한 인터넷, 영상 및 어플리케이션 시장 역시 급속도로 활성화되고 있다. 본 연구에서는 음식 레시피 사용자들의 관점에서 레시피를 분류하기 위하여 사용자의 리뷰 데이터를 비지도학습인 K-평균 군집화 기법을 적용하였으며, 이를 통해 "음식 레시피 분류 모델"을 도출하였다. 그 결과 특정 목적, 조리 단계 등 많은 사용자들이 필요한 정보를 포함한 총 25개의 군집으로 분류하였다.

Keywords

References

  1. J. Hong and H. Lee, "Recipe Recommendation Method Using Text Analytics and Ingredients Hierarchy," Journal of the Korean Institute of Industrial Engineers, vol. 45, no. 4, pp. 302-312, Aug. 2019. https://doi.org/10.7232/JKIIE.2019.45.4.302
  2. J. Choi and G. Han, "Structural Analysis of Cooking Recipe Texts - Based on Kimchi Jjigae Recipe," The Korean Journal of Community Living Science, vol. 28, no. 2, pp. 191-201, May 2017. https://doi.org/10.7856/kjcls.2017.28.2.191
  3. D. Lee, I. Min, J. -W. Kim, J. Lee, J. Shin, and S. Lee, "Design and Implementation of Food Recommendation System Based on Personal Preference," in Proceedings of the 2016 Winter Conference of the Korean Institute of Information Scientists and Engineers, Pyeongchang, Korea, pp. 1411-1413, 2016.
  4. J. Mueller and A. Thyagarajan, "Siamese Recurrent Architectures for Learning Sentence Similarity," in Proceedings of the National Conference on Artificial Intelligence, Phoenix: AZ, USA, vol. 30, no. 1, pp. 2786-2792, 2016.
  5. D. H. Kim, "Comparison of Taste Prediction Performance of Recipe using Machine learning," in Proceedings of Symposium of the Korean Institute of communications and Information Sciences, Jeongseon, Korea, pp.1088-1090, 2018.
  6. J. H. Jo, "Development of wine recommendation algorithm using similarity algorithm -Focus on Bigdata analysis techniques," M.S. thesis, Namseoul University, 2018.
  7. M. Dillon, "Introduction to modern information retrieval," Information Processing & Management, vol. 19 no. 6, pp. 402-403, 1983. https://doi.org/10.1016/0306-4573(83)90062-6
  8. S. -J. Choi, "Beta-wave Correlation Analysis Model based on Unsupervised Machine Learning," Journal of Digital Convergence, vol. 17, no. 3, pp. 221-226, Mar. 2019. https://doi.org/10.14400/JDC.2019.17.3.221