• Title/Summary/Keyword: K-means 클러스터링

Search Result 368, Processing Time 0.028 seconds

Feature Selection of Fuzzy Pattern Classifier by using Fuzzy Mapping (퍼지 매핑을 이용한 퍼지 패턴 분류기의 Feature Selection)

  • Roh, Seok-Beom;Kim, Yong Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.646-650
    • /
    • 2014
  • In this paper, in order to avoid the deterioration of the pattern classification performance which results from the curse of dimensionality, we propose a new feature selection method. The newly proposed feature selection method is based on Fuzzy C-Means clustering algorithm which analyzes the data points to divide them into several clusters and the concept of a function with fuzzy numbers. When it comes to the concept of a function where independent variables are fuzzy numbers and a dependent variable is a label of class, a fuzzy number should be related to the only one class label. Therefore, a good feature is a independent variable of a function with fuzzy numbers. Under this assumption, we calculate the goodness of each feature to pattern classification problem. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

The Model of Network Packet Analysis based on Big Data (빅 데이터 기반의 네트워크 패킷 분석 모델)

  • Choi, Bomin;Kong, Jong-Hwan;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.392-399
    • /
    • 2013
  • Due to the development of IT technology and the information age, a dependency of the network over the most of our lives have grown to a greater extent. Although it provides us to get various useful information and service, it also has negative effectiveness that can provide network intruder with vulnerable roots. In other words, we need to urgently cope with theses serious security problem causing service disableness or system connected to network obstacle with exploiting various packet information. Many experts in a field of security are making an effort to develop the various security solutions to respond against these threats, but existing solutions have a lot of problems such as lack of storage capacity and performance degradation along with the massive increase of packet data volume. Therefore we propose the packet analysis model to apply issuing Big Data technology in the field of security. That is, we used NoSQL which is technology of massive data storage to collect the packet data growing massive and implemented the packet analysis model based on K-means clustering using MapReudce which is distributed programming framework, and then we have shown its high performance by experimenting.

Design of Pattern Classification Rule based on Local Linear Discriminant Analysis Classifier by using Differential Evolutionary Algorithm (차분진화 알고리즘을 이용한 지역 Linear Discriminant Analysis Classifier 기반 패턴 분류 규칙 설계)

  • Roh, Seok-Beom;Hwang, Eun-Jin;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • In this paper, we proposed a new design methodology of a pattern classification rule based on the local linear discriminant analysis expanded from the generic linear discriminant analysis which is used in the local area divided from the whole input space. There are two ways such as k-Means clustering method and the differential evolutionary algorithm to partition the whole input space into the several local areas. K-Means clustering method is the one of the unsupervised clustering methods and the differential evolutionary algorithm is the one of the optimization algorithms. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods.

Preliminary Study on Image Processing Method for Concrete Temperature Monitoring using Thermal Imaging Camera (열화상카메라 기반 콘크리트 온도 측정을 위한 이미지 프로세싱 적용 기초 연구)

  • Mun, Seong-Hwan;Kim, Tae-Hoon;Cho, Kyu-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.206-207
    • /
    • 2020
  • Accurate estimation of concrete strength development at early ages is a critical factor to secure structural stability as well as to speed up the construction process. The temperature generated from the heat of hydration is considered as a key parameter in predicting the early age strength. Conventionally, concrete temperature has been measured by temperature sensors installed inside concrete. However, considering the measurement on building structures with multiple floors, this method requires reinstallation and repositioning of hardware such as sensors, data loggers and routers for data transfer. This makes the temperature monitoring work cumbersome and inefficient. Concrete temperature monitoring by using thermal remote sensing can be an effective alternative to supplement those shortcomings. In this study, image processing was carried out through K-means clustering technique, which is a unsupervised learning method, and the classification results were analyzed accordingly. In the future, research will be conducted on how to automatically recognize concrete among various objects by using deep learning techniques.

  • PDF

Clustering of 2D-Gel images (2H-Gel 이미지의 정렬 및 클러스터링)

  • Hur Won
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.71-75
    • /
    • 2005
  • Alignment of 2D-gel images of biological samples can visualize the difference of expression profiles and also inform us candidates of protein spots to be further analyzed. However, comparison of two proteome images between the case and control does not always successfully identify differentially expressed proteins because of sample-to-sample variation, poor reproducibility of 2D-gel electrophoresis and inconsistent electrophoresis conditions. Multiple alignment of 2D-gel image must be preceded before visualizing the difference of expression profiles or clustering proteome images. Thus, a software for the alignment of multiple 2D-Gel images and their clustering was developed by applying various algorithms and statistical methods. Microsoft Visual C++ was used to implement the algorithms in this work. Multiresoultion-multilevel algorithm was found out to be suitable for fast alignment and for largely distorted images. Clustering of 10 different proteome images of Fetal Alcohol Syndrome, was carried out by implementing a k-means algorithm and it gave a phylogenetic tree of proteomic distance map of the samples. However, the phylogenetic tree does not discriminate the case and control. The whole image clustering shows that the proteomic distance is more dependent to age and sex.

Nonlinear Inference Using Fuzzy Cluster (퍼지 클러스터를 이용한 비선형 추론)

  • Park, Keon-Jung;Lee, Dong-Yoon
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.203-209
    • /
    • 2016
  • In this paper, we introduce a fuzzy inference systems for nonlinear inference using fuzzy cluster. Typically, the generation of fuzzy rules for nonlinear inference causes the problem that the number of fuzzy rules increases exponentially if the input vectors increase. To handle this problem, the fuzzy rules of fuzzy model are designed by dividing the input vector space in the scatter form using fuzzy clustering algorithm which expresses fuzzy cluster. From this method, complex nonlinear process can be modeled. The premise part of the fuzzy rules is determined by means of FCM clustering algorithm with fuzzy clusters. The consequence part of the fuzzy rules have four kinds of polynomial functions and the coefficient parameters of each rule are estimated by using the standard least-squares method. And we use the data widely used in nonlinear process for the performance and the nonlinear characteristics of the nonlinear process. Experimental results show that the non-linear inference is possible.

Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis (주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.735-740
    • /
    • 2012
  • In this paper, we introduce design methodologies of polynomial radial basis function neural network classifier with the aid of Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA). By minimizing the information loss of given data, Feature data is obtained through preprocessing of PCA and LDA and then this data is used as input data of RBFNNs. The hidden layer of RBFNNs is built up by Fuzzy C-Mean(FCM) clustering algorithm instead of receptive fields and linear polynomial function is used as connection weights between hidden and output layer. In order to design optimized classifier, the structural and parametric values such as the number of eigenvectors of PCA and LDA, and fuzzification coefficient of FCM algorithm are optimized by Artificial Bee Colony(ABC) optimization algorithm. The proposed classifier is applied to some machine learning datasets and its result is compared with some other classifiers.

Robust k-means Clustering-based High-speed Barcode Decoding Method to Blur and Illumination Variation (블러와 조명 변화에 강인한 k-means 클러스터링 기반 고속 바코드 정보 추출 방법)

  • Kim, Geun-Jun;Cho, Hosang;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • In this paper presents Robust k-means clustering-based high-speed bar code decoding method to blur and lighting. for fast operation speed and robust decoding to blur, proposed method uses adaptive local threshold binarization methods that calculate threshold value by dividing blur region and a non-blurred region. Also, in order to prevent decoding fail from the noise, decoder based on k-means clustering algorithm is implemented using area data summed pixel width line of the same number of element. Results of simulation using samples taken at various worst case environment, the average success rate of proposed method is 98.47%. it showed the highest decoding success rate among the three comparison programs.

Design of Pattern Classifier for Electrical and Electronic Waste Plastic Devices Using LIBS Spectrometer (LIBS 분광기를 이용한 폐소형가전 플라스틱 패턴 분류기의 설계)

  • Park, Sang-Beom;Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.477-484
    • /
    • 2016
  • Small industrial appliances such as fan, audio, electric rice cooker mostly consist of ABS, PP, PS materials. In colored plastics, it is possible to classify by near infrared(NIR) spectroscopy, while in black plastics, it is very difficult to classify black plastic because of the characteristic of black material that absorbs the light. So the RBFNNs pattern classifier is introduced for sorting electrical and electronic waste plastics through LIBS(Laser Induced Breakdown Spectroscopy) spectrometer. At the preprocessing part, PCA(Principle Component Analysis), as a kind of dimension reduction algorithms, is used to improve processing speed as well as to extract the effective data characteristics. In the condition part, FCM(Fuzzy C-Means) clustering is exploited. In the conclusion part, the coefficients of linear function of being polynomial type are used as connection weights. PSO and 5-fold cross validation are used to improve the reliability of performance as well as to enhance classification rate. The performance of the proposed classifier is described based on both optimization and no optimization.

Movement Intention Detection of Human Body Based on Electromyographic Signal Analysis Using Fuzzy C-Means Clustering Algorithm (인체의 동작의도 판별을 위한 퍼지 C-평균 클러스터링 기반의 근전도 신호처리 알고리즘)

  • Park, Kiwon;Hwang, Gun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2016
  • Electromyographic (EMG) signals have been widely used as motion commands of prosthetic arms. Although EMG signals contain meaningful information including the movement intentions of human body, it is difficult to predict the subject's motion by analyzing EMG signals in real-time due to the difficulties in extracting motion information from the signals including a lot of noises inherently. In this paper, four Ag/AgCl electrodes are placed on the surface of the subject's major muscles which are in charge of four upper arm movements (wrist flexion, wrist extension, ulnar deviation, finger flexion) to measure EMG signals corresponding to the movements. The measured signals are sampled using DAQ module and clustered sequentially. The Fuzzy C-Means (FCMs) method calculates the center values of the clustered data group. The fuzzy system designed to detect the upper arm movement intention utilizing the center values as input signals shows about 90% success in classifying the movement intentions.