Browse > Article

Clustering of 2D-Gel images  

Hur Won (School of Biotechnology and Bioengineering, Kangwon National University)
Publication Information
KSBB Journal / v.20, no.2, 2005 , pp. 71-75 More about this Journal
Abstract
Alignment of 2D-gel images of biological samples can visualize the difference of expression profiles and also inform us candidates of protein spots to be further analyzed. However, comparison of two proteome images between the case and control does not always successfully identify differentially expressed proteins because of sample-to-sample variation, poor reproducibility of 2D-gel electrophoresis and inconsistent electrophoresis conditions. Multiple alignment of 2D-gel image must be preceded before visualizing the difference of expression profiles or clustering proteome images. Thus, a software for the alignment of multiple 2D-Gel images and their clustering was developed by applying various algorithms and statistical methods. Microsoft Visual C++ was used to implement the algorithms in this work. Multiresoultion-multilevel algorithm was found out to be suitable for fast alignment and for largely distorted images. Clustering of 10 different proteome images of Fetal Alcohol Syndrome, was carried out by implementing a k-means algorithm and it gave a phylogenetic tree of proteomic distance map of the samples. However, the phylogenetic tree does not discriminate the case and control. The whole image clustering shows that the proteomic distance is more dependent to age and sex.
Keywords
Proteomics; 2D-Gel image; Clustering; Image registration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jensen, O. N., M. R. Larsen, and P. Roepstorff (1998) Mass spectrometric identification and microcharacterization of proteins from electrophoretic gels: Strategies and applications, Proteins, Supplement 2, 74-89
2 Hanash, S. M. and D. Teichroew (1988), Mining the human proteome - Eeperience with the human lymphoid protein database, Electrophoresis 19, 301-309
3 Veenstra, T. D. and T. P. Comads (2003), Serum protein fmgerprinting, Curr. Opin. Mol. Ther. 5, 584-93
4 Andrew, L. (1997), A book in methods in molecular biology, Vol. 112, Humana Press, Totowa, NJ, pp 339-410
5 Veeser, S., M. J. Dunn, and G. Z. Yang (2001), Multiresolution image registration for two-dimensional gel electrophoresis, Proteomics 1, 856-870   DOI   ScienceOn
6 Han, J. and M. Kamber (2001), Data Mining: Concepts and Techniques, p314, Academic Press, San Diego
7 Harry, J. L., M. R. Wilkins, B. R. Herbert, N. H. Packer, A. A. Gooley, and K. L. Williams (2000), Proteomics: Capacity versus utility, Electrophoresis 21, 1071-1081   DOI   ScienceOn
8 Cordwell, S. J., A. S. Nouwens, and B. J. Walsh (2001), Comparative proteomics of bacterial pathogens, Proteomics 1, 461-72   DOI   ScienceOn
9 Haynes, P. A. and J. R. Yates (2000), Proteome profiling - pitfalls and progress, Yeast 17, 81-87   DOI   ScienceOn
10 Smilansky, Z. (2001), Automatic registration of images of two-dimensional protein gels, Electrophoresis 22, 1616-1626   DOI   PUBMED   ScienceOn
11 Humpherysmith, I., S. J. Cordwell, and W. P. Blackstock (1997), Proteome research - Complementarity and limitations with respect to the RNA and DNA worlds, Electrophoresis 18, 304-318
12 Lopez, M. F. (2000), Better approaches to finding the needle in a haystack: Optimizing Proteome analysis through automation, Electrophoresis 21, 1082-1093   DOI   PUBMED   ScienceOn
13 Jungblut, P. R., D. Bumann, G. Haas, U. Zimny-Arndt, P. Holland, S. Lamer, F. Siejak, A. Aebischer, and T. F. Meyer (2000), Comparative proteome analysis of Helicobacter pylori, Molecular Microbiology 36, 710-725   DOI   ScienceOn
14 Haynes, P. A., S. P. Gygi, D. Figeys, and R. Aebersold (1999), Proteome analysis Biological assay or data archive, Electrophoresis 19, 1403-1421
15 Robinson M. K., J. E. Myrick, L. O. Henderson, C. D. Coles, M. K. Powell, G. A. Orr, and P. F. Lemkin (1995), Two-dimensional protein electrophoresis and multiple hypothesis testing to detect potential serum protein biomarkers in children with fetal alcohol syndrome, Electrophoresis 16, 1176-1183   DOI   ScienceOn
16 Celis, J. E., M. Ostergaard, H. H. Rasmussen, P. Gromov, L Gromova, H. Varmark, H. Palsdottir, N. Magnusson, I. Andersen, B. Basse, J. B. Lauridsen, G. Ratz, H. Wolf, T. F. Omtoft, P. Celis, and A. Celis (1999), A comprehensive protein resource for the study of bladder cancer, Electrophoresis 20, 300-309   DOI   ScienceOn
17 Tomlinson, A. J., M. Hincapie, G. E. Morris, and R. M. Chicz (2002), Global proteome analysis of a human gastric carcinoma, Electrophoresis 23, 3233-3240   DOI   ScienceOn
18 Michener, C. M., A. M. Ardekani, E. F. 3rd Petricoin, L. A. Liotta and E. C. Kohn (2002), Genomics and proteomics: application of novel technology to early detection and prevention of cancer, Cancer Detect Prevo 26, 249-55   DOI   ScienceOn
19 Everitt, B. S., S. Landau and M. Leese (2001), Cluster Analysis, pll, Oxford University Press, New York