• Title/Summary/Keyword: K-means 클러스터링

검색결과 368건 처리시간 0.036초

무선센서망 내 KOCED 라우팅 프로토콜 광역분야 성능평가 (KOCED performance evaluation in the wide field of wireless sensor network)

  • 김태현;박세영;윤대열;이종용;정계동
    • 문화기술의 융합
    • /
    • 제8권2호
    • /
    • pp.379-384
    • /
    • 2022
  • 무선 센서 네트워크에서는 직접 접근이 어려운 환경에 대량으로 센서 노드들이 배치된다. 배터리 교체나 재충전 등 전력 공급이 어렵다. 에너지를 센서 노드와 같이 사용하는 것이 매우 중요하다. 따라서, 네트워크의 수명을 늘리기 위해 중요한 고려 사항은 각 센서 노드의 에너지 소비를 최소화하는 것이다. 무선 센서 노드의 에너지가 에너지를 다하여 방전되면 센서 노드의 제 역할을 할 수 없으며, 네트워크 내 노드의 일정량(50% 또는 80%) 이상이 소진되면 네트워크가 제 역할을 하지 못한다. 따라서 노드의 에너지 소비를 최소화하고 네트워크를 장기간 유지하기 위해 다양한 프로토콜에서 제안된 방법이다. 우리는 클러스터의 중심점과 잔류 에너지를 고려하고 플롯 포인트와 K-평균을 고려한다(WSN은 최적의 클러스터링 클러스터링을 제안한다). KOCED 프로토콜에 대한 성능 평가를 하고자한다. 최근 머신러닝 방법 중 하나인 K-평균 알고리즘을 적용한 프로토콜을 비교하고 성능 평가 요소를 제시하고자 한다.

클러스터링 알고리듬을 이용한 히스토그램 변경에 의한 영상 대비 향상 기법 (A Image Contrast Enhancement Technique by Histogram Distribution Alteration Using Clustering Algorithm)

  • 김남진;김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.177-180
    • /
    • 2003
  • 텔레비젼 카메라, 비디콘 카메라(vidicon camera), 디지털 검지기, 스캐너 등 물리적 장치로 획득한 영상은 주위의 밝기로 인하여 어두운 영상을 얻거나 영상장치의 물리적 속성과 영상 전송에 기인하여 영상은 열악한 대비를 가질 수 있다. 본 논문에서는 획득한 저대비 영상을 대비 향상시켜주는 기법을 제안한다. 제안된 기법은 K-means 알고리듬을 사용하여 교차점을 자동으로 선정하는 방법을 사용한다. 이 최적의 교차점을 선정하는 과정은 획득한 영상을 물체와 배경으로 분리하는 두 개의 클래스 문제로 보고 K-means 알고리듬을 적용하였다. 구한 교차점을 사용하여 영상을 양분하여 히스토그램 평활화 방법을 적용하였다. 본 논문에서는 퍼지성 지수(index of fuzziness)를 사용하여 향상의 정도를 측정하였다. 제안된 기법을 저대비 영상에 적용하였으며 그 결과를 히스토그램 평활화 기법의 결과와 비교하였다.

  • PDF

클러스터링 알고리듬을 이용한 영상 대비 향상 기법 (A Image Contrast Enhancement Technique Using Clustering Algorithm)

  • 김남진;김용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.188-191
    • /
    • 2004
  • 야간에 비디오카메라로 촬영시 열악한 주위 환경과 영상 전송에 기인하여 다양한 잡음에 의하여 왜곡되거나 흐린 저대비(low contrast)영상을 가질 수 있다. 본 논문에서는 획득한 저대비 영상을 대비 향상시켜주는 기법을 제안한다. 동영상 압축표준인 MPEG-2는 인간의 시각 특성상 색차(chrominance)신호보다 밝기(luminance)신호에 더 민감하기 때문에 밝기신호와 색차 신호를 분리하여 압축한다. 밝기신호만을 추출한 후 K-means 알고리듬을 사용하여 교차점을 자동으로 선정하는 방법을 사용하는데, 이 최적의 교차점을 선정하는 과정은 획득한 영상을 물체와 배경으로 분리하는 두 개의 클래스 문제로 보고 K-means 알고리듬을 적용하였고 구한 교차점을 사용하여 영상을 양분하여 히스토그램 평활화 방법을 적용하였다 븐 논문에서는 퍼지성 지수(index of fuzziness)를 사용하여 향상의 정도를 측정하였다. 제안된 기법을 저대비 영상에 적용하였으며 그 결과를 히스토그램 평활화 기법의 결과와 비교하였다.

  • PDF

신경망 및 통계적 방법에 의한 클러스터링 성능평가 (A Study on Performance Evaluation of Clustering Algorithms using Neural and Statistical Method)

  • 윤석환;민준영;신용백
    • 산업경영시스템학회지
    • /
    • 제19권37호
    • /
    • pp.41-51
    • /
    • 1996
  • This paper evaluates the clustering performance of a neural network and a statistical method. Algorithms which are used in this paper are the GLVQ(Generalized Learning vector Quantization) for a neural method and the k-means algorithm fer a statistical clustering method. For comparison of two methods, we calculate the Rand's c statistics. As a result, the mean of c value obtained with the GLVQ is higher than that obtained with the k-means algorithm, while standard deviation of c value is lower. Experimental data sets were the Fisher's IRIS data and patterns extracted from handwritten numerals.

  • PDF

시공간 정보를 이용한 움직이는 물체의 분할 (Moving Object Segmentation Using Spatio-Temporal Information)

  • 장재식;김종배;이창우;김항준
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.217-220
    • /
    • 2001
  • 본 논문에서는 시공간정보를 이용하여 연속된 영상에서 움직이는 물체를 분할하는 방법을 제안한다. 제안 된 방법은 차영상(difference Image)을 이용한 움직임 추출단계, k-means 클러스터링 알고리즘을 이용한 영역 분할단계, 그리고 영역의 밝기값과 움직임 정보를 움직임 추정 및 분할단계로 구-성되어져 있다. 제안된 방법을 실험해본 결과 연속영상 내에서 다양한 움직임을 가진 물체를 효과적으로 분할 할 수 있는 결과를 얻을 수 있다.

  • PDF

직접 볼륨 렌더링을 위한 CNN 기반 TF 색상 매핑 (TF color mapping for direct volume rendering with CNN)

  • 김석연;장윤
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권5호
    • /
    • pp.25-32
    • /
    • 2021
  • 직접 볼륨 렌더링은 볼륨 표면의 연산 없이 2차원 공간에 투영하여 렌더링 한다. 직접 볼륨 렌더링에서 전이함수(TF)는 볼륨에 색상과 투명도와 같은 광원 특성을 할당하는데 활용된다. 하지만 초보자가 TF를 조작하여 볼륨데이터를 파악하고 색상을 할당하기까지 오랜 시간이 필요합니다. 본 논문에서는 직관적인 볼륨 렌더링을 위해 인터넷에서 수집한 이미지를 사용하여 TF에 볼륨의 색상을 매핑하는 접근 방식을 제안한다. 또한 우리는 K-means 클러스터링을 활용한 색상 추출 방법을 토의한다.

클러스터링 기법을 활용한 중소기업 지원 지식서비스의 성과유형 분류: K 연구원 사례를 중심으로 (Classification of Performance Types for Knowledge Intensive Service Supporting SMEs Using Clustering Techniques: Focused on the Case of K Research Institute)

  • 이정우;김성진;김민관;유재영;한혁;박훈;한창희
    • 한국전자거래학회지
    • /
    • 제22권3호
    • /
    • pp.87-103
    • /
    • 2017
  • 많은 제조기반의 중소기업들은 프로세스나 제품을 혁신하기 위해 공공 및 사기업의 지식서비스를 아웃소싱하고 있다. 본 연구의 사례인 K 연구원은 여러 지식서비스를 다양한 조합형태로 제공하는데, 이러한 제공형태의 복잡성으로 인해 지식서비스 사업성과를 정확히 분석한다는 것이 어려운 상황이다. 본 연구는 기존에 성과평가 항목을 상향식으로 선정하는 방식이 아닌 하향식 관점에서 성과항목을 도출하였다. K 연구원 지식서비스 수혜기업인 82개 기업사례에서 74개의 성과항목이 도출되었고, 최종적으로 17개 항목으로 정제하였다. 이후 사례-성과 행렬을 구조화하여 기업별 성과의 유무를 조사하여 이진 데이터로 입력하였다. K-means 클러스터링 분석을 통해 3개의 군집을 각각 '핵심 경쟁력 강화(제품 및 특허)', '국내 및 해외시장 확대', '운영 효율성 제고'로 식별할 수 있었다.

증분형 K-means 클러스터링 기반 방사형 기저함수 신경회로망 모델 설계 (Design of Incremental K-means Clustering-based Radial Basis Function Neural Networks Model)

  • 박상범;이승철;오성권
    • 전기학회논문지
    • /
    • 제66권5호
    • /
    • pp.833-842
    • /
    • 2017
  • In this study, the design methodology of radial basis function neural networks based on incremental K-means clustering is introduced for learning and processing the big data. If there is a lot of dataset to be trained, general clustering may not learn dataset due to the lack of memory capacity. However, the on-line processing of big data could be effectively realized through the parameters operation of recursive least square estimation as well as the sequential operation of incremental clustering algorithm. Radial basis function neural networks consist of condition part, conclusion part and aggregation part. In the condition part, incremental K-means clustering algorithms is used tweights of the conclusion part are given as linear function and parameters are calculated using recursive least squareo get the center points of data and find the fitness using gaussian function as the activation function. Connection s estimation. In the aggregation part, a final output is obtained by center of gravity method. Using machine learning data, performance index are shown and compared with other models. Also, the performance of the incremental K-means clustering based-RBFNNs is carried out by using PSO. This study demonstrates that the proposed model shows the superiority of algorithmic design from the viewpoint of on-line processing for big data.

강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계 (Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases)

  • 최우용;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.586-591
    • /
    • 2014
  • 본 연구에서는 인공 벌 군집(ABC: Artificial Bee Colony) 알고리즘을 이용하여 주어진 레이더 데이터로부터 강수 사례와 비강수 사례를 분류하는 방사형 기저함수 신경회로망(RBFNNs: Radial Basis Function Neural Networks)분류기를 소개한다. 기상청에서 사용하고 있는 기상 레이더 데이터의 특성 분석을 통해 입력 데이터를 구성한다. 방사형 기저함수 신경회로망의 조건부에서는 Fuzzy C-Means 클러스터링 방법을 이용하여 적합도를 계산하고, 결론부에서는 최소자승법(LSE: Least Square Method)을 이용하여 다항식 계수를 추정한다. 추론부에서 최종출력 값은 퍼지 추론 방법을 이용하여 얻어진다. 제안된 분류기의 성능은 기상청에서 사용하는 QC와 CZ 데이터를 고려하여 비교 및 분석되어진다.

지능형 알고리즘을 이용한 재질별 검정색 플라스틱 분류기 설계 (Design of Classifier for Sorting of Black Plastics by Type Using Intelligent Algorithm)

  • 박상범;노석범;오성권;박은규;최우진
    • 자원리싸이클링
    • /
    • 제26권2호
    • /
    • pp.46-55
    • /
    • 2017
  • 본 연구에서는 레이저유도붕괴분광(Laser Induced Breakdown Spectroscopy, LIBS)을 이용하여 방사형 기저함수 신경회로망(Radial Basis Function Neural Networks, RBFNNs) 분류기 설계방법론을 개발하고 실제 폐소형가전제품의 플라스틱 분류 시스템에 적용하였다. ABS, PP, PS와 같은 검정색 플라스틱을 구별하기 위해, 지능형 알고리즘 중 하나인 방사형 기저함수 신경회로망 분류기를 설계하였다. 획득한 입력변수는 주성분 분석법(Principal Component Analysis, PCA)을 이용하여 축소시켰으며, 군집화기법 중 하나인 K-means 클러스터링 방법을 이용해 여러 그룹으로 분할하였다. 전체 데이터는 학습 데이터와 테스트 데이터를 4:1의 비율로 나누었으며, 제안된 분류기의 성능 및 신뢰도를 평가하기 위하여 5-FCV(5-Fold Cross Validation) 기법을 사용하였다. 입력변수와 클러스터의 개수가 각각 5개인 경우, 제안된 분류기의 분류 성능은 96.78%로 나타났다. 또한, 제안된 분류기는 다른 분류기들과 비교하였을 경우 분류 성능의 관점에서 우수성을 보여주었다.