전자해도는 종이해도 간행을 위한 수치해도 기반으로 편집되며, 그리드 형식의 격자형 체계로 간행되고 있다. 이에 따라 전자해도에 포함되는 수심정보의 밀집도가 일관적이지 못하여 이에 대한 개선이 요구되었다. 본 연구에서는 위성영상 분류기법 중 K-Means 클러스터링 기법과 ISODATA 클러스터링 기법을 검토 하였으며, 이를 전자해도 수심정보에 맞게 수정 및 적용 하였다. 개발결과는 전자해도 로딩 부분, 수심 밀집도 개선 부분, 전자해도 쓰기 부분으로 구성되며, 알고리즘 적용 결과에 따라 수심 밀집도 개선된 결과를 확인 할 수 있었다.
웹 문서 추천 시스템에서는 유사한 내용의 문서임에도 불구하고 URL이 달라서 다른 문서로 인식하여 사용자에게 추천하는 데이터 희소성 문제가 있다. 여기서 기존 연구들은 이 문제에 대한 해결 방법으로 TF-IDF를 이용하였으나 비용 및 시간의 한계가 있으며 유의어 분류 문제가 있다. 본 논문에서는 Word2Vec을 이용한 웹문서 학습 시스템을 통해 문제를 해결한다. 제안 시스템은 언론사의 뉴스를 수집하고 이를 정형화된 형식으로 분석하여 가공하는 전처리 과정을 거친 후 Word2Vec 학습을 통해 문서 벡터를 생성하고 이를 K-Means 클러스터링으로 유사 문서군으로 분류한다. 이 시스템을 이용하면 데이터 희소성 문제를 해결할 뿐만 아니라 연산량이 TF-IDF에 비해 줄어들고 유의어 분류 시 유사도가 높아지는 강점이 있다.
GA(Genetic Algorithm)는 NP-Complete 도메인이나 NP-Hard 도메인 내의 문제들에 대해서 최적의 해를 찾기 위해서 많이 사용되어 지는 진화 컴퓨팅 방법 중 하나이다. 모바일 로봇 기술 중 경로계획은 NP-Complete 도메인 영역의 문제 중 하나로 이를 해결하기 위해서 Dijkstra 등의 그래프 이론을 이용한 연구가 많이 연구되었고 최근에는 GA등 진화 컴퓨팅 기법을 이용하여 최적의 경로를 찾는 연구가 많이 수행되고 있다. 그러나 모바일 로봇이 처리해야 될 공간 정보 크기가 증가함에 따라 기존 GA의 개체의 크기가 증가되어 게산 복잡도가 높아져 시간 지연등의 문제가 발생할 수 있다. 이는 모바일 로봇의 잠재적 오류로 발생될 수 있다. 공간 정보에는 동적이 장애물들이 예측 불허하게 나타 날 수 있는데 이것은 전역 경로 계획을 수립할 때 또한 반영되어야 된다. 본 논문에서는 k-means 클러스터링 기법을 이용하여 장애물 밀집도 및 거리 정보를 기반으로 공간정보를 k개의 군집 공간으로 재분류하여 이를 기반으로 N*M개의 그리드 개체 집단을 생성하여 최적 경로계획을 수립하는 GA를 제시한다.
본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self Organization Map) 신경회로망에 2단계의 학습과정을 활용하여 항공영상에서 물체를 인근의 물체와 효과적으로 구별하기 위한 접근방법을 제안하고 실제의 항공영상에 적용하여 기존의 고전적인 K-means 알고리즘 및 원래의 SOM 알고리즘보다 우수함을 보인다.
The conventional clustering approaches are mostly based on minimizing total dissimilarity of input and output. However, the clustering approach may not be helpful in some cases of clustering decision making units (DMUs) with production feature converting multiple inputs into multiple outputs because it does not care converting functions. Data envelopment analysis (DEA) has been widely applied for efficiency estimation of such DMUs since it has non-parametric characteristics. We propose a new clustering method to identify groups of DMUs that are similar in terms of their input-output profiles. A real world example is given to explain the use and effectiveness of the proposed method. And we calculate similarity value between its result and the result of a conventional clustering method applied to the example. After the efficiency value was added to input of K-means algorithm, we calculate new similarity value and compare it with the previous one.
최근 빅데이터 분야의 높아진 관심과 더불어 빅데이터의 처리를 통한 응용 분야에 대한 관심도 높아지고 있다. 개인의 감성을 파악할 수 있는 오피니언마이닝은 사용자 개인 맞춤 서비스 제공 분야에서 많이 이용되고 있는 빅데이터 처리 기법이다. 이를 바탕으로 본 논문에서는 사용자들의 장소에 대한 텍스트 형태의 리뷰를 오피니언마이닝 기법으로 처리하고 k-means 클러스터링 작업을 통해 사용자의 감성을 분석하였다. 클러스터링 작업으로 분류된 비슷한 범주의 감성을 가진 사용자들끼리 동일한 수치 값을 부여한다. 부여된 수치 값으로 협업 필터링 추천 시스템을 이용해 선호도를 예측하고 예측 값이 높은 장소 순으로 지도위에 마커와 함께 내용을 표시하여 사용자에게 추천내용을 보여줄 수 있는 방안을 제안하였다.
본 논문에서는 일반적인 신경회로망의 단점인 느린 학습속도를 획기적으로 개선한 네트워크인 Extreme Learning Machine과 전문가들의 언어적 정보들을 기술 할 수 있는 퍼지 이론을 접목한 퍼지 Extreme Learning Machine을 최적화하기 위하여 Particle Swarm Optimization 알고리즘을 이용하였다. 퍼지 Extreme Learning Machine의 활성화 함수를 일반적인 시그모이드 함수를 사용하지 않고, 퍼지 C-Means 클러스터링 알고리즘의 활성화 레벨 함수를 이용하였다. Particle Swarm Optimization 알고리즘과 같은 최적화 알고리즘을 통하여 퍼지 Extreme Learning Machine의 활성화 함수의 파라미터들을 최적화 한다. Particle Swarm Optimization과 같은 최적화 알고리즘을 통한 제안된 모델의 최적화 하고 최적화된 모델의 분류성능을 평가하기 위하여 다양한 머신 러닝 데이터 집합을 사용하여 평가한다.
모바일 기기로부터 클라우드 서버로 태스크를 오프로딩하는 방법은 클라우드랫(cloudlet)의 도입으로 인해 향상되었다. 동적 오프로딩 알고리즘을 통해 모바일 장비는 수행할 타스크에 적절한 서버를 선택할 수 있다. 하지만 현재의 태스크 분배 방식은 의사결정에서 중요한 VM의 수를 고려하지 않고 있다. 본 논문은 클러스터된 데이터 센터에서 동적인 타스크 분배 방법을 제시한다. 또한 서버에서 자원의 과부하를 방지하기 위해 할당된 CPU에 따라 VM을 균형있게 클라우드 서버에 이주시키는 VM이주 기법을 제안한다. 클라우드 서버의 이주 방법을 향상시키기 위해 최대 CPU 관점에서 데이터 센터의 자원 용량도 고려한다. 시뮬레이션 결과, 제시한 태스크 분배 기법이 전반적으로 시스템의 성능을 향상시켰음을 나타내었다.
컴퓨터 기술의 발전으로 힘입어 수많은 논문이 출판되고 있으며, 새로운 분야들도 계속 생기면서 사용자들은 방대한 논문들 중 자신이 필요로 하는 논문을 검색하거나 분류하기에 많은 어려움을 겪고 있다. 사용자의 이러한 어려움을 완화하기 위해 본 논문에서는 유사 내용의 논문을 분류하고 이를 군집화하는 방법을 제한한다. 본 논문의 제안 방법은 TF-IDF를 이용하여 각 논문의 초록으로부터 주요 주제어를 추출하고, K-평균 클러스터링 알고리즘을 이용하여 추출한 TF-IDF 값을 근거로 논문들을 유사 내용의 논문으로 군집화한다. 제안 방법의 실효성을 검증하기 위해 실제 데이터인 FGCS 저널의 논문 데이터를 사용하였으며, 엘보우 기법을 적용하여 클러스터 개수를 도출하고 실루엣 기법을 이용하여 클러스터링 성능을 검증하였다.
농업 분야에서 여러 가지 센서들과 임베디드 시스템을 활용하여 한 무선 센서 네트워크 기술이 적용되고 있는 추세이다. 특히, 센서 네트워크를 활용하여 작물의 질병을 조기에 진단할 수 있는 많은 연구가 진행되고 있다. 기존 병충해 진단 연구들은 실제 농가에 적용하기 어려운 부분이 존재한다. 본 논문은 이를 개선하고자 하였으며, 화상카메라를 통해 받아온 작물의 잎사귀 이미지를 분석하여 병충해를 초기에 감지 가능한 알고리즘을 제안한다. 실제 시설원예 및 노지 환경 농가의 캡쳐한 이미지 내에서 감염 의심 영역을 개선된 K 평균 클러스터링 기법을 통해 분류하였다. 그 후 엣지 검출, 엣지 추적 기법을 활용하여 해당 영역의 잎사귀 내부 존재 여부를 확인하였다. 인근 농가에서 촬영한 토마토 잎사귀 이미지를 이용하여 성능 평가를 수행하였다. 기존 논문의 방법 보다 제안 알고리즘의 감영 영역 분류 능력이 우수한 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.