• 제목/요약/키워드: K-means 클러스터링

검색결과 368건 처리시간 0.033초

전자해도 수심 밀집도 개선에 관한 연구 (A Study on improvement of sounding density of ENCs)

  • 오세웅;박종민;서상현;이문진;전태병
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2011년도 춘계학술대회
    • /
    • pp.34-36
    • /
    • 2011
  • 전자해도는 종이해도 간행을 위한 수치해도 기반으로 편집되며, 그리드 형식의 격자형 체계로 간행되고 있다. 이에 따라 전자해도에 포함되는 수심정보의 밀집도가 일관적이지 못하여 이에 대한 개선이 요구되었다. 본 연구에서는 위성영상 분류기법 중 K-Means 클러스터링 기법과 ISODATA 클러스터링 기법을 검토 하였으며, 이를 전자해도 수심정보에 맞게 수정 및 적용 하였다. 개발결과는 전자해도 로딩 부분, 수심 밀집도 개선 부분, 전자해도 쓰기 부분으로 구성되며, 알고리즘 적용 결과에 따라 수심 밀집도 개선된 결과를 확인 할 수 있었다.

  • PDF

Word2Vec을 이용한 웹 문서 클러스터링 시스템 구현 (Implementation of a Web Document Clustering System Using Word2Vec)

  • 이현석;안성훈;이용환;천명재;박혁주;박미화;이용규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.26-29
    • /
    • 2016
  • 웹 문서 추천 시스템에서는 유사한 내용의 문서임에도 불구하고 URL이 달라서 다른 문서로 인식하여 사용자에게 추천하는 데이터 희소성 문제가 있다. 여기서 기존 연구들은 이 문제에 대한 해결 방법으로 TF-IDF를 이용하였으나 비용 및 시간의 한계가 있으며 유의어 분류 문제가 있다. 본 논문에서는 Word2Vec을 이용한 웹문서 학습 시스템을 통해 문제를 해결한다. 제안 시스템은 언론사의 뉴스를 수집하고 이를 정형화된 형식으로 분석하여 가공하는 전처리 과정을 거친 후 Word2Vec 학습을 통해 문서 벡터를 생성하고 이를 K-Means 클러스터링으로 유사 문서군으로 분류한다. 이 시스템을 이용하면 데이터 희소성 문제를 해결할 뿐만 아니라 연산량이 TF-IDF에 비해 줄어들고 유의어 분류 시 유사도가 높아지는 강점이 있다.

클러스터링 기법을 이용한 모바일 로봇 경로계획 알고리즘 설계 (The Design of a Mobile Robot Path Planning using a Clustering method)

  • 강원석;김진욱;김영덕;안진웅;이동하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.341-342
    • /
    • 2008
  • GA(Genetic Algorithm)는 NP-Complete 도메인이나 NP-Hard 도메인 내의 문제들에 대해서 최적의 해를 찾기 위해서 많이 사용되어 지는 진화 컴퓨팅 방법 중 하나이다. 모바일 로봇 기술 중 경로계획은 NP-Complete 도메인 영역의 문제 중 하나로 이를 해결하기 위해서 Dijkstra 등의 그래프 이론을 이용한 연구가 많이 연구되었고 최근에는 GA등 진화 컴퓨팅 기법을 이용하여 최적의 경로를 찾는 연구가 많이 수행되고 있다. 그러나 모바일 로봇이 처리해야 될 공간 정보 크기가 증가함에 따라 기존 GA의 개체의 크기가 증가되어 게산 복잡도가 높아져 시간 지연등의 문제가 발생할 수 있다. 이는 모바일 로봇의 잠재적 오류로 발생될 수 있다. 공간 정보에는 동적이 장애물들이 예측 불허하게 나타 날 수 있는데 이것은 전역 경로 계획을 수립할 때 또한 반영되어야 된다. 본 논문에서는 k-means 클러스터링 기법을 이용하여 장애물 밀집도 및 거리 정보를 기반으로 공간정보를 k개의 군집 공간으로 재분류하여 이를 기반으로 N*M개의 그리드 개체 집단을 생성하여 최적 경로계획을 수립하는 GA를 제시한다.

  • PDF

SOM의 2단계학습을 이용한 항공영상 클러스터링 (Areal Image Clustering using SOM with 2 Phase Learning)

  • 이경희
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.995-998
    • /
    • 2013
  • 본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self Organization Map) 신경회로망에 2단계의 학습과정을 활용하여 항공영상에서 물체를 인근의 물체와 효과적으로 구별하기 위한 접근방법을 제안하고 실제의 항공영상에 적용하여 기존의 고전적인 K-means 알고리즘 및 원래의 SOM 알고리즘보다 우수함을 보인다.

  • PDF

DEA를 이용한 의사결정단위의 클러스터링 (Clustering of Decision Making Units using DEA)

  • 김경택
    • 산업경영시스템학회지
    • /
    • 제37권4호
    • /
    • pp.239-244
    • /
    • 2014
  • The conventional clustering approaches are mostly based on minimizing total dissimilarity of input and output. However, the clustering approach may not be helpful in some cases of clustering decision making units (DMUs) with production feature converting multiple inputs into multiple outputs because it does not care converting functions. Data envelopment analysis (DEA) has been widely applied for efficiency estimation of such DMUs since it has non-parametric characteristics. We propose a new clustering method to identify groups of DMUs that are similar in terms of their input-output profiles. A real world example is given to explain the use and effectiveness of the proposed method. And we calculate similarity value between its result and the result of a conventional clustering method applied to the example. After the efficiency value was added to input of K-means algorithm, we calculate new similarity value and compare it with the previous one.

오피니언마이닝을 이용한 사용자 맞춤 장소 추천 시스템 (Location Recommendation Customize System Using Opinion Mining)

  • 최은정;김동근
    • 한국정보통신학회논문지
    • /
    • 제21권11호
    • /
    • pp.2043-2051
    • /
    • 2017
  • 최근 빅데이터 분야의 높아진 관심과 더불어 빅데이터의 처리를 통한 응용 분야에 대한 관심도 높아지고 있다. 개인의 감성을 파악할 수 있는 오피니언마이닝은 사용자 개인 맞춤 서비스 제공 분야에서 많이 이용되고 있는 빅데이터 처리 기법이다. 이를 바탕으로 본 논문에서는 사용자들의 장소에 대한 텍스트 형태의 리뷰를 오피니언마이닝 기법으로 처리하고 k-means 클러스터링 작업을 통해 사용자의 감성을 분석하였다. 클러스터링 작업으로 분류된 비슷한 범주의 감성을 가진 사용자들끼리 동일한 수치 값을 부여한다. 부여된 수치 값으로 협업 필터링 추천 시스템을 이용해 선호도를 예측하고 예측 값이 높은 장소 순으로 지도위에 마커와 함께 내용을 표시하여 사용자에게 추천내용을 보여줄 수 있는 방안을 제안하였다.

PSO 알고리즘을 이용한 퍼지 Extreme Learning Machine 최적화 (Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization)

  • 노석범;왕계홍;김용수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.87-92
    • /
    • 2016
  • 본 논문에서는 일반적인 신경회로망의 단점인 느린 학습속도를 획기적으로 개선한 네트워크인 Extreme Learning Machine과 전문가들의 언어적 정보들을 기술 할 수 있는 퍼지 이론을 접목한 퍼지 Extreme Learning Machine을 최적화하기 위하여 Particle Swarm Optimization 알고리즘을 이용하였다. 퍼지 Extreme Learning Machine의 활성화 함수를 일반적인 시그모이드 함수를 사용하지 않고, 퍼지 C-Means 클러스터링 알고리즘의 활성화 레벨 함수를 이용하였다. Particle Swarm Optimization 알고리즘과 같은 최적화 알고리즘을 통하여 퍼지 Extreme Learning Machine의 활성화 함수의 파라미터들을 최적화 한다. Particle Swarm Optimization과 같은 최적화 알고리즘을 통한 제안된 모델의 최적화 하고 최적화된 모델의 분류성능을 평가하기 위하여 다양한 머신 러닝 데이터 집합을 사용하여 평가한다.

모바일 클라우드 컴퓨팅에서 데이터센터 클러스터링과 가상기계 이주를 이용한 동적 태스크 분배방법 (A Dynamic Task Distribution approach using Clustering of Data Centers and Virtual Machine Migration in Mobile Cloud Computing)

  • 존크리스토퍼 마테오;이재완
    • 인터넷정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.103-111
    • /
    • 2016
  • 모바일 기기로부터 클라우드 서버로 태스크를 오프로딩하는 방법은 클라우드랫(cloudlet)의 도입으로 인해 향상되었다. 동적 오프로딩 알고리즘을 통해 모바일 장비는 수행할 타스크에 적절한 서버를 선택할 수 있다. 하지만 현재의 태스크 분배 방식은 의사결정에서 중요한 VM의 수를 고려하지 않고 있다. 본 논문은 클러스터된 데이터 센터에서 동적인 타스크 분배 방법을 제시한다. 또한 서버에서 자원의 과부하를 방지하기 위해 할당된 CPU에 따라 VM을 균형있게 클라우드 서버에 이주시키는 VM이주 기법을 제안한다. 클라우드 서버의 이주 방법을 향상시키기 위해 최대 CPU 관점에서 데이터 센터의 자원 용량도 고려한다. 시뮬레이션 결과, 제시한 태스크 분배 기법이 전반적으로 시스템의 성능을 향상시켰음을 나타내었다.

키워드 군집화를 이용한 연구 논문 분류에 관한 연구 (A Study on Research Paper Classification Using Keyword Clustering)

  • 이윤수;;이종혁;길준민
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권12호
    • /
    • pp.477-484
    • /
    • 2018
  • 컴퓨터 기술의 발전으로 힘입어 수많은 논문이 출판되고 있으며, 새로운 분야들도 계속 생기면서 사용자들은 방대한 논문들 중 자신이 필요로 하는 논문을 검색하거나 분류하기에 많은 어려움을 겪고 있다. 사용자의 이러한 어려움을 완화하기 위해 본 논문에서는 유사 내용의 논문을 분류하고 이를 군집화하는 방법을 제한한다. 본 논문의 제안 방법은 TF-IDF를 이용하여 각 논문의 초록으로부터 주요 주제어를 추출하고, K-평균 클러스터링 알고리즘을 이용하여 추출한 TF-IDF 값을 근거로 논문들을 유사 내용의 논문으로 군집화한다. 제안 방법의 실효성을 검증하기 위해 실제 데이터인 FGCS 저널의 논문 데이터를 사용하였으며, 엘보우 기법을 적용하여 클러스터 개수를 도출하고 실루엣 기법을 이용하여 클러스터링 성능을 검증하였다.

토마토 잎사귀 질병 감지를 위한 이미지 처리 메커니즘 (An Image Processing Mechanism for Disease Detection in Tomato Leaf)

  • 박정현;이성근
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.959-968
    • /
    • 2019
  • 농업 분야에서 여러 가지 센서들과 임베디드 시스템을 활용하여 한 무선 센서 네트워크 기술이 적용되고 있는 추세이다. 특히, 센서 네트워크를 활용하여 작물의 질병을 조기에 진단할 수 있는 많은 연구가 진행되고 있다. 기존 병충해 진단 연구들은 실제 농가에 적용하기 어려운 부분이 존재한다. 본 논문은 이를 개선하고자 하였으며, 화상카메라를 통해 받아온 작물의 잎사귀 이미지를 분석하여 병충해를 초기에 감지 가능한 알고리즘을 제안한다. 실제 시설원예 및 노지 환경 농가의 캡쳐한 이미지 내에서 감염 의심 영역을 개선된 K 평균 클러스터링 기법을 통해 분류하였다. 그 후 엣지 검출, 엣지 추적 기법을 활용하여 해당 영역의 잎사귀 내부 존재 여부를 확인하였다. 인근 농가에서 촬영한 토마토 잎사귀 이미지를 이용하여 성능 평가를 수행하였다. 기존 논문의 방법 보다 제안 알고리즘의 감영 영역 분류 능력이 우수한 것으로 나타났다.