Journal of the Korean Institute of Intelligent Systems
/
v.16
no.6
/
pp.716-720
/
2006
Fuzzy sets are good for abstracting and unifying information using natural language like terms. However, fuzzy sets embody vagueness and users may have different attitude to the vagueness, each user may choose difference one as the best among several fuzzy values. In this paper, we develop a method teaming a user's, preference on fuzzy values and select one which fits to his preference. Users' preferences are modeled with artificial neural networks. We gather learning data from users by asking to choose the best from two fuzzy values in several representative cases of comparing two fuzzy sets. In order to establish tile representative comparing cases, we enumerate more than 600 cases and cluster them into several groups. Neural networks ate trained with the users' answer and the given two fuzzy values in each case. Experiments show that the proposed method produces outputs closet to users' preference than other methods.
Ji, Hyunjung;Shin, Gyeongil;Shin, Dongil;Shin, Dongkyoo
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.803-806
/
2017
고객의 행동을 분석하기 위한 RFM(Recency, Frequency, Monetary)은 마케팅 분양에서 널리 쓰이고 있는 시작분석기법이다. 최근 축적되는 데이터가 많아지면서 이를 활용하기 위해 기계학습에 대한 관심이 증가하였다. 따라서 RFM 기법과 다양한 알고리즘을 결합하여 데이터를 분석하고자 하는 시도가 이루어지고 있다. 본 논문에서는 RFM 기법과 대표적인 클러스터링 알고리즘인 k-means를 통하여 고객을 등급화 하는 방법에 대해 실험하였다. 기존의 실험에서는 k값을 8 혹은 9로 지정하는 사례가 많았다. 그러나 본 실험에서는 내부평가방법을 통해 데이터 셋에 대한 최적의 k값을 구해보았고, 실험 결과 사용한 4개의 데이터 셋에서 3이라는 동일한 결과가 나왔다.
여러 종류의 트래픽을 포함하는 네트웍 트래픽 데이터에서 각 종의 트래픽을 분류할 수 있는 능력은 네트웍 침입 탐지를 가능하게 하는 기본이다. 본 연구에서는 서비스 거부 공격과 사전 조사 행위 트래픽을 다른 트래픽으로부터 구분해 낼 수 있는 특징을 파악하고, 그것이 효과적인지 퍼지 c-means 기법으로 사용하여 실험 하였다.
Park, Jae-Woo;Shim, Sung-Bo;Oh, Heung-Min;Kim, Kwang Beak
Proceedings of the Korean Society of Computer Information Conference
/
2018.01a
/
pp.47-50
/
2018
본 논문에서는 초음파 영상에서 환자 정보를 제거하여 ROI 영역을 추출하고, 추출된 ROI 영역에서 최대 명암도를 임계치로 설정한 이진화 기법을 적용하여 ROI 영역을 이진화 한다. 이진화된 ROI 영역에서 4 방향 윤곽선 추적 기법을 적용하여 상완동맥 혈류 영역이 존재하는 사다리꼴 형태의 영역을 추출한다. 추출된 사다리꼴 형태의 영역에서 상완동맥 혈류영역을 정확히 추출하기 위하여 제안된 무게 중심법을 이용하여 추출된 후보 영역을 양자화 한다. 무게 중심법은 추출된 사다리꼴 영역에서 FCM 기반 무게중심법과 PCM 기반 무게중심법을 각각 계산한 후, 두 중심 간의 차이가 존재 할 경우에는 두 중심의 평균값을 새로운 무게 중심으로 설정하여 각 픽셀들을 클러스터링하여 상완 동맥 영역을 추출한다. 추출된 상완 동맥 영역에는 고혈압 영역인 빨강색 영역과 저혈압이나 혈류가 역류하는 영역인 파란색 영역이 존재한다. 추출된 상완 동맥 영역에서 고혈압 영역만을 추출하기 위해 빨강색 영역을 제외한 그 외의 영역은 제거한다. 전문의가 제공한 상완동맥 혈류 초음파 영상을 대상으로 TPR(True Positive Rate) 검사을 분석한 결과, 제안된 방법이 기존의 방법 보다 TPR 값이 높게 나타나는 것을 확인하였다.
Journal of Korean Society of Industrial and Systems Engineering
/
v.40
no.4
/
pp.203-210
/
2017
Data clustering is one of the most difficult and challenging problems and can be formally considered as a particular kind of NP-hard grouping problems. The K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, it has high possibility to trap in local optimum and high variation of solutions with different initials for the large data set. Therefore, we need study efficient computational intelligence method to find the global optimal solution in data clustering problem within limited computational time. The objective of this paper is to propose a combined artificial bee colony (CABC) with K-means for initialization and finalization to find optimal solution that is effective on data clustering optimization problem. The artificial bee colony (ABC) is an algorithm motivated by the intelligent behavior exhibited by honeybees when searching for food. The performance of ABC is better than or similar to other population-based algorithms with the added advantage of employing fewer control parameters. Our proposed CABC method is able to provide near optimal solution within reasonable time to balance the converged and diversified searches. In this paper, the experiment and analysis of clustering problems demonstrate that CABC is a competitive approach comparing to previous partitioning approaches in satisfactory results with respect to solution quality. We validate the performance of CABC using Iris, Wine, Glass, Vowel, and Cloud UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KABCK (K-means+ABC+K-means) is better than ABCK (ABC+K-means), KABC (K-means+ABC), ABC, and K-means in our simulations.
Journal of the Korean Operations Research and Management Science Society
/
v.42
no.3
/
pp.25-34
/
2017
K-means is a popular and efficient data clustering method that only uses intra-cluster distance to establish a valid index with a previously fixed number of clusters. K-means is useless without a suitable number of clusters for unsupervised data. This paper aimsto propose the Group Search Optimization (GSO) using Silhouette to find the optimal data clustering solution with a number of clusters for unsupervised data. Silhouette can be used as valid index to decide the number of clusters and optimal solution by simultaneously considering intra- and inter-cluster distances. The performance of GSO using Silhouette is validated through several experiment and analysis of data sets.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.302-305
/
2019
국민 청원 사이트가 뛰어난 접근성과 신속성으로 인하여 국민들로부터 많은 관심을 받고 있다. 현재 국민청원 사이트의 카테고리 분류는 '미래', '성장동력' 등을 포함한 16개의 카테고리 및 기타로 구성되어 있으나 그 기준이 모호하여 많은 청원글들이 기타 카테고리로 분류되고 있는 상황이다. 이는 청원글의 내용을 명확히 반영하지 않고 미리 정의된 카테고리 구조를 사용하고 있는데서 기인한다고 할 수 있다. 본 논문에서는 보다 구체적으로 정의된 카테고리를 정의하고자 추천 순으로 1,500개의 청원글을 수집하였고, 수집된 청원글의 내용을 바탕으로 카테고리 구조를 추출하였다. 먼저, k-평균 알고리즘을 적용하여 청원글을 군집하여 대분류를 정의하였고, 보다 구체적인 세부 분류를 정의하기 위하여 토픽모델링을 실시하였다. 본 논문에서 제시하는 계층적 카테고리 구조는 청원글의 내용을 바탕으로 대분류와 세부분류로 구성된 것이므로 새로운 청원글을 등록하거나 분류하는 데 적절한 것으로 보인다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.366-368
/
2018
본 논문에서는 이러한 문제점을 개선하기 위해 상완 동맥 영역에 대한 RGB 채널을 HSV 채널로 변환한다. 변환된 HSV 채널에 대해 고혈압 영역의 특징을 강조하게 하기 위해 밝기 값을 나타내는 V값을 조절한다. 조절된 HSV 채널을 다시 RGB 채널로 변환한 후, Fuzzy C_Means 기반 무게중심과 Possibilistc C_Means 기반 무게 중심을 기반으로 새로운 무게 중심을 구하여 픽셀들을 클러스터링하여 상완동맥 영역의 고혈압 영역을 추출한다. 추출된 상완 동맥의 고혈압 영역에 대해 헤모글로빈 색소 정보를 나타내는 IHb 값을 이용하여 상완 동맥의 고혈압 영역에서 유사한 헤모글로빈 색소 정보를 가지는 영역을 분할한다. 분할된 영역들을 혈류의 속도를 나타내는 색상표와 대조하여 고혈압의 진행에 대해 분석하는 방법을 제안한다. 제안된 방법을 색조 도플러 초음파 영상을 대상으로 실험한 결과, 제안된 방법이 고혈압의 진행에 대한 분석 결과와 색조 도플러 초음파 영상 장비에 나타난 고혈압 진행 결과와 거의 일치하는 것을 확인할 수 있었다.
Recent years, the use of multimedia information is rapidly increasing, and the video media is the most rising one than any others, and this field Integrates all the media into a single data stream. Though the availability of digital video is raised largely, it is very difficult for users to make the effective video access, due to its length and unstructured video format. Thus, the minimal interaction of users and the explicit definition of video structure is a key requirement in the lately developing image and video management systems. This paper defines the terms and hierarchical video structure, and presents the system, which construct the clustering-based video hierarchy, which facilitate users by browsing the summary and do a random access to the video content. Instead of using a single feature and domain-specific thresholds, we use multiple features that have complementary relationship for each other and clustering-based methods that use normalization so as to interact with users minimally. The stage of shot boundary detection extracts multiple features, performs the adaptive filtering process for each features to enhance the performance by eliminating the false factors, and does k-means clustering with two classes. The shot list of a result after the proposed procedure is represented as the video hierarchy by the intelligent unsupervised clustering technique. We experimented the static and the dynamic movie videos that represent characteristics of various video types. In the result of shot boundary detection, we had almost more than 95% good performance, and had also rood result in the video hierarchy.
Park, Byoun-Jun;Lee, Su-Gu;Oh, Sung-Kwun;Kim, Hyun-Ki
Proceedings of the KIEE Conference
/
2000.07d
/
pp.3007-3009
/
2000
In this paper, we design a Multi-Fuzzy model by means of clustering method and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model. HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy are identified by genetic algorithms. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy model and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.