The performance of a novel medical question-answering engine called CliniCluster and existing search engines, such as CQA-1.0, Google, and Google Scholar, was evaluated using known-item searching. Known-item searching is a document that has been critically appraised to be highly relevant to a therapy question. Results show that, using CliniCluster, known-items were retrieved on average at rank 2 ($MRR@10{\approx}0.50$), and most of the known-items could be identified from the top-10 document lists. In response to ill-defined questions, the known-items were ranked lower by CliniCluster and CQA-1.0, whereas for Google and Google Scholar, significant difference in ranking was not found between well- and ill-defined questions. Less than 40% of the known-items could be identified from the top-10 documents retrieved by CQA-1.0, Google, and Google Scholar. An analysis of the top-ranked documents by strength of evidence revealed that CliniCluster outperformed other search engines by providing a higher number of recent publications with the highest study design. In conclusion, the overall results support the use of CliniCluster in answering therapy questions by ranking highly relevant documents in the top positions of the search results.
본 연구의 목적은 상하수도 시설을 중심으로 한 물 인프라의 지속가능성을 평가하는 지수들을 활용하여 경제, 사회, 환경적 측면에서의 지속가능성을 평가하고 지속가능성 확보 필요성을 제고하기 위함이다. 경제, 사회, 환경적 지수 중 중요하게 고려해야할 세부지수들을 파악하고, 전국 지자체를 유형화하여 집단 간 특성을 비교분석하였다. 세부 지수의 가중치 산출은 주성분 분석을 활용하였으며, 지자체를 유형화하는 과정에는 K-평균 군집분석을 시행하였다. 가중치 분석 결과, 전체 12개의 지수 중 재정자립도, 자본수입비율, 보조금비율, 서비스보급률, 노후화율, 수생태건강성, 하천수질이 지속가능성을 평가하기 위한 주요한 변수로 분석되었으며, 특히, 경제부문 지수의 영향력이 가장 높은 것으로 나타났다. 다음으로는 군집분석 결과를 통해 지자체를 크게 두 가지 유형으로 분류하였고, 각 유형 별 특징을 살펴보았다. 먼저 경제부문의 지속가능성이 우수한 집단에서는 환경부문에 대한 개선이 필요한 것으로 나타났지만, 대체로 지속가능성 상태가 우수한 것으로 나타났다. 환경부문이 우수한 집단에서는 지속가능성 상태가 열악한 지자체가 많이 포함되어 있으며, 특히, 경제부문 상태를 향상시키기 위한 집중적인 노력이 필요한 것으로 보인다.
The purpose of this study was to analysis the perception of men's wear brands (Intermezzo and Rogatis), for developing the possibility & strategy of the nichi-market in men's wear market for the apparel marketers and manufactures. For this study, the data obtained from 312 respondents were analyzed by descriptive statistics, ANOVA. The results from the study were as follow ; The perception of the 2 brand images revealed that Intermezzo accounted for 79.8% of the frequencies, and Rogatis accounted for 99%. Also, results revealed the total evaluation of Intermezzo accounted for 3.86 of the mean rated on 5 point Likert-type scales in the 9 features, and Rogatis accounted for 3.28. And then, results revealed that there were signifiant differences in 2 cluster of Rogatis that the purchasing cluster accounted for 3.46 of the mean, and the perceiving cluster accounted for 3.07. The brand images of Intermezzo and Rogatis were evaluated and rated on 5 point Likert-type scales of 17 pair adjectives. As a results, the image characteristic with Intermezzo was considered with more dynamic, trendy than the image characteristic with Rogatis. Also, results revealed that The Image with Intermezzo was considered with urban, lively, chic, modern, and sophsticated image-features, and the Image with Rogatis were evaluated mannish, urban, sophsticated, luxury, and static image-features.
To propose an effective ensemble methods in predicting $PM_{10}$ concentration, six experiments were designed by different ensemble average methods (e.g., non-weighted, single weighted, and cluster weighted methods). The single weighted method was calculated the weighted value using both multiple regression analysis and singular value decomposition and the cluster weighted method was estimated the weighted value based on temperature, relative humidity, and wind component using multiple regression analysis. The effects of ensemble average methods were significantly better in weighted average than non-weight. The results of ensemble experiments using weighted average methods were distinguished according to methods calculating the weighted value. The single weighted average method using multiple regression analysis showed the highest accuracy for hourly $PM_{10}$ concentration, and the cluster weighted average method based on relative humidity showed the highest accuracy for daily mean $PM_{10}$ concentration. However, the result of ensemble spread analysis showed better reliability in the single weighted average method than the cluster weighted average method based on relative humidity. Thus, the single weighted average method was the most effective method in this study case.
Mean-reverting analysis refers to a way of estimating the underlining tendency after new data has evoked the variation in the equilibrium state. In this paper, we propose a new method to interpret the specular portraits of Premature Ventricular Contraction(PVC) arrhythmia by applying K-means unsupervised learning algorithm on electrocardiogram(ECG) data. Aiming at this purpose, we applied a mean-reverting model to analyse Heart Rate Variability(HRV) in terms of the modified poincare plot by considering PVC rhythm as the component of disrupting the homeostasis state. Based on our experimental tests on MIT-BIH ECG database, we can find the fact that the specular patterns portraited by K-means clustering on mean-reverting HRV data can be more clearly visible and the Euclidean metric can be used to identify the discrepancy between the normal sinus rhythm and PVC beats by the relative distance among cluster-centroids.
Park, Kyung Hee;Bayome, Mohamed;Park, Jae Hyun;Lee, Jeong Woo;Baek, Seung-Hak;Kook, Yoon-Ah
대한치과교정학회지
/
제45권2호
/
pp.74-81
/
2015
Objective: The purposes of this study were 1) to classify lingual dental arch form types based on the lingual bracket points and 2) to provide a new lingual arch form template based on this classification for clinical application through the analysis of three-dimensional virtual models of normal occlusion sample. Methods: Maxillary and mandibular casts of 115 young adults with normal occlusion were scanned in their occluded positions and lingual bracket points were digitized on the virtual models by using Rapidform 2006 software. Sixty-eight cases (dataset 1) were used in K-means cluster analysis to classify arch forms with intercanine, interpremolar and intermolar widths and width/depth ratios as determinants. The best-fit curves of the mean arch forms were generated. The remaining cases (dataset 2) were mapped into the obtained clusters and a multivariate test was performed to assess the differences between the clusters. Results: Four-cluster classification demonstrated maximum inter-cluster distance. Wide, narrow, tapering, and ovoid types were described according to the intercanine and intermolar widths and their best-fit curves were depicted. No significant differences in arch depths existed among the clusters. Strong to moderate correlations were found between maxillary and mandibular arch widths. Conclusions: Lingual arch forms have been classified into 4 types based on their anterior and posterior dimensions. A template of the 4 arch forms has been depicted. Three-dimensional analysis of the lingual bracket points provides more accurate identification of arch form and, consequently, archwire selection.
In this paper, we propose a new data clustering method using local probability and hypothesis theory. To cluster the test data set we analyze the local area of the test data set using local probability distribution and decide the candidate class of the data set using mean standard deviation and variance etc. To decide each class of the test data, statistical hypothesis theory is applied to the decided candidate class of the test data set. For evaluating, the proposed classification method is compared to the conventional fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm. The simulation results show more accuracy than results of fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm.
The purpose of this study is to survey and classify the differences of the perceived fashion risk according to the apparels and accessories that consumers purchased. 243 ungraduate were separated into three groups and asked to rate 15 fashion risk concerns about each item on 5-point scale. The number of item was 103 in the total of the three group. Data were analyzed by using Mean, SO, ANOVA, Factor Analysis, Cluster Analysis, Cronbach $\alpha$ with SAS program. The result of this study was high perceived risk in leather Jacket, suit, long coat, sunglasses. The most important factor of the perceived risk structure in the fashion goods was about the perceived risk perception of others. The apparels and accessories which completes the dress were classified into the same cluster. Consumers don't perceive the fashion goods independently, but they make much of the combination of other items.
최근에는 확률강우량을 산정할 경우 지점빈도해석의 단점을 보완한 지역빈도해석법이 자주 실무에 적용되고 있으나, 가뭄에 관련한 연구에서는 대부분 아직까지 지점자료를 이용한 가뭄분석을 실시하고 있다. 본 연구에서는 가뭄의 지역적 특성 분석을 실시하기 위하여 필요한 동질한 가뭄특성을 지닌 지역을 구분하는 연구를 수행하였다. 본 연구에서는 기상청 강우관측 지점자료 중 30년 이상의 강우자료를 보유한 58개의 관측지점을 대상으로 표준강수지수(SPI)를 산정하여 가뭄의 심도, 지속기간, 강도, 발생빈도 등과 같은 가뭄특성인자를 생성하였다. 가뭄특성인자는 수문학적으로 동질한 특성을 지닌 지역을 구분하는데 중요한 정보를 제공한다. 본 연구에서는 다양한 가뭄특성인자를 효율적으로 활용하여 K-means 기법을 적용한 군집분석을 실시하여 동질한 가뭄특성을 지닌 지역을 6개 지역으로 구분하였다. 이러한 지역구분은 가뭄 특성의 공간적 해석을 가능하게 할 수 있고, 지점빈도 해석의 단점을 보완하는 지역빈도 해석도 가능하게 할 수 있다.
객체를 분류하기 위하여 유사한 특징을 기반으로 하는 다양한 클러스터해석은 데이터 마이닝에서 필수적이다. 그러나 많은 데이터베이스에 포함되어 있는 범주형 데이터의 경우에 기존의 분할접근방법은 객체간의 불확실성을 처리하는데 한계가 있다. 범주형 데이터의 분할과정에서 식별불가능에 의한 동치류의 불확실성에 대한 접근논리가 러프집합의 대수학적인 논리에만 국한되어서 알고리즘의 안정성과 효율성이 떨어지는 요인으로 작용하고 있다. 본 논문에서는 범주형 데이터에 존재하는 속성의 의존도를 고려하기 위하여 정보이론적인 척도를 기반으로 러프엔트로피를 정의하고 MMMR이라는 알고리즘을 제안하여 분할속성을 추출한다. 제안된 방법의 성능을 분석하고 비교하기 위하여 K-means, 퍼지에 의한 방법과 표준편차를 이용한 기존의 방법과 비교우위를 ZOO데이터에 국한하여 알아본다. ZOO데이터를 이용하여 기존의 범주형 알고리즘과의 비교우위를 살펴보고 제안된 알고리즘의 효율성을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.