• Title/Summary/Keyword: K-linearization

Search Result 524, Processing Time 0.027 seconds

THE OSEEN-TYPE EXPANSION OF NAVIER-STOKER FLOWS WITH AN APPLICATION TO SWIMMING VELOCITY

  • Kim, Sun-Chul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.337-346
    • /
    • 2001
  • A linearization owing to Oseen originally is performed to study the recirculating Navier-Stokes flows at high Reynolds numbers. The procedure is generalized to produce higher order asymptotic expansion for the flow velocity. We call this the Oseen-type expansion of the given flow. As a concrete example, the velocity of a steady Navier-Stockes flow due to a swimming flexible sheet in two-dimensional infinite strip domain is calculated by an asymptotic expansion technic with two-parameters, the Reynolds number R and the perturbation parameter $\varepsilon$ first and then R secondly. The asymptotic result is up to second order in $\varepsilon$.

  • PDF

Container Crane Control: Modified Time-Optimal Traveling Followed by Nonlinear Residual Sway Control (컨테이너 기중기의 제어 : 수정된 시간최적주행과 비선형 잔류흔들림 제어)

  • Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.630-639
    • /
    • 1999
  • To achieve fast loading and unloading of containers from a container ship, quick suppression of the remaining sway motion of the container at the end of each trolley stroke is crucial. Due to the pendulum motion of the container and disturbances like sind, residual sway always exists at the end of trolley movement. In this paper, the sway-control problem of a container crane is investigated. A two-stage control is proposed. The first stage is a time optimal controlfor the purpose of fast trolley traveling. The second stage is a nonlinear control for the quick suppression of residual sway, which starts right after the first stage while lowering the container. The nonlinear control is investigated in the perspective of controlling an underatuated mechanical system, which combines partial feedback linearization to account for the known nonlinearities as much as possible, and variable structure control to account for the unmodeled dynamics and disturbances. Simulation and experimental results are provided.

  • PDF

A FILTERING CONDITION AND STOCHASTIC ADAPTIVE CONTROL USING NEURAL NETWORK FOR MINIMUM-PHASE STOCHASTIC NONLINEAR SYSTEM (최소위상 확률 비선형 시스템을 위한 필터링 조건과 신경회로망을 사용한 적응제어)

  • Seok, Jin-Wuk
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.18-21
    • /
    • 2001
  • In this paper, some geometric condition for a stochastic nonlinear system and an adaptive control method for minimum-phase stochastic nonlinear system using neural network me provided. The state feedback linearization is widely used technique for excluding nonlinear terms in nonlinear system. However, in the stochastic environment, even if the minimum phase linear system derived by the feedback linearization is not sufficient to be controlled robustly. In the viewpoint of that, it is necessary to make an additional condition for observation of nonlinear stochastic system, called perfect filtering condition. In addition, on the above stochastic nonlinear observation condition, I propose an adaptive control law using neural network. Computer simulation shoo's that the stochastic nonlinear system satisfying perfect filtering condition is controllable and the proposed neural adaptive controller is more efficient than the conventional adaptive controller.

  • PDF

자동차 시트 및 마네킹 시스템의 자유 진동

  • Kim, Seong-Keol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.109-121
    • /
    • 2000
  • A simplified modeling approach of free vibration for occupied car seats was demonstrated to be feasible. The model consisting of interconnected masses springs and dampers was initially broken down into subsystems and experiments conducted to determine approximate values for model parameters. Which were each stiffness and damping value. Nonlinear equations of motion were derived and model parameters obtained in experiments were applied to these equations. A mathematical model of free vibration for car seat and mannequin system was built with 7 degrees of freedom. in order to calculate natural frequencies and the corresponding mode shapes. linear equations of motion were obtained through linearization. In order to explore the effects of each model parameter free vibration analysis were preformed.

  • PDF

Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model (역모델을 이용한 MR 댐퍼의 감쇠계수 제어)

  • Na, Uhn Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

Neural Network based Variable Structure Control for a Class of Nonlinear Systems (비선형 시스템 계통에서 신경망에 근거한 가변구조 제어)

  • Kim, Hyeon-Ho;Lee, Cheon-Hui
    • The KIPS Transactions:PartA
    • /
    • v.8A no.1
    • /
    • pp.56-62
    • /
    • 2001
  • This paper presents a neural network based variable structure control scheme for nonlinear systems. In this scheme, a set of local variable structure control laws are designed on the basis of the linear models about preselected representative points which cover the range of the system operation of interest. From the combination of the set of local variable structure control laws, neural networks infer the approximate control input in between the operating points. The neural network based variable structure control alleviates the effects of model uncertainties, which cannot be compensated by the control techniques using feedback linearization. It also relaxes the discontinuity in the system’s behavior that appears when the control schemes based on the family of the linear models are applied to nonlinear systems. Simulation results of a ball and beam system, to which feedback linearization cannot be applied, demonstrate the feasibility of the proposed method.

  • PDF

Innovative iteration technique for large deflection problem of annular plate

  • Chen, Y.Z.
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.605-620
    • /
    • 2013
  • This paper provides an innovative iteration technique for the large deflection problem of annular plate. After some manipulation, the problem is reduced to a couple of ODEs (ordinary differential equation). Among them, one is derived from the plane stress problem for plate, and other is derived from the bending of plate. Since the large deflection for plate is assumed in the problem, the relevant non-linear terms appear in the resulting ODEs. The pseudo-linearization procedure is suggested to solve the problem and the nonlinear ODEs can be solved in the way for the solution of linear ODE. To obtain the final solution, it is necessary to use the iteration. Several numerical examples are provided. In the study, the assumed value for non-dimensional loading is larger than those in the available references.

Control of Semi-Active Suspensions for Commercial Vehicles (상용 차량용 반능동 현가 시스템의 제어)

  • Yi, K.;Jung, J.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.98-106
    • /
    • 1998
  • In this study a control law and performance potential of semi-active suspensions for a tractor/semi-trailer have been investigated. The control law for airbag semi-active suspensions modeled in this study is developed using feedback linearization and Linear Quadratic (LQ) optimal control method. Inherent nonlinearity of the airbag suspensions has been considered in the control law development. It has been shown that the proposed semi-active control law provides better performance than that of well known sky-hook damping control strategy.

  • PDF

Linearization Method and Vibration Analysis of a Constrained Multibody System Driven by Constant Generalized Speeds (일정 일반속력으로 구동되는 구속 다물체계의 선형화기법 및 진동해석)

  • 최동환;박정훈;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.725-730
    • /
    • 2001
  • This paper presents a vibration analysis method for constrained mechanical systems driven by constant generalized speeds. Equilibrium positions are obtained first and vibration analysis are performed around the positions. The method developed in this paper employs partial velocity matrix to obtain a minimum number of differential equations. To verify the accuracy of the proposed algorithm, linear vibration analyses of two numerical examples are performed and the results are compared with results from a commercial program or previous literature.

  • PDF