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ABSTRACT

In this paper, some geometrie condition for a stoechastic

nonlinesr systent and an adaptive esntrol method for minimum-

phase stochastic nonlinear system using neural network are
provided, The state feedback linearization is widely used
technique for excluding nonlinear terms in nonlinear sys-
tem. However, in the stochastic environmment, even if the
minimum phase linear system derived by the feedback lin-
earization is not sufficient to be controlled robustly. In
the viewpoint of that, it is necessary to make an addi-
tional condition for abservation of nonlinear stochastic sys-
tem, called perfect filtering condition. In addition, on the
abaove stochsstic nonlinear observation condition. 1 propose
an adaptive control law using neural network. Computer
simulation shows that the stochastic nonlinear systemw sat-
isfving perfect filtering conditien is controllable and the
proposed neural adaptive controller is more efficient than
the conventional adaptive controller

1. INTRODUCTION

In the past two decades, differential geometry has provide
to be an effective means of analysis and design of nonlinear
control systemn a8 it wes in the past for a linear algebra
in relation to linear system. Through the study of many
researchers in the nonlinear control theory, the geometrie
approach has been shown to be very efficient in solving
various synthesis problems of linear and nonlinear systems
as naninteracting contrel problems and disturbance decon-
pling: problems which has constant DC disturbance or linear
combinatorisl noise with wide range frequency 61,

However, in the nonlinear system including white noise,
the disturbance deeoupling problem is not the same to the
conventional preblem. The reason is that the nonlinear
system including white noise is not a system with simple
The white noise can represents sn uncountably large value
even il the probability of that is very low. Hence, essen-
tially, the nonlinear system with a white noise is not a
bounded input system in that the disturbance generated
by a white noise looks like another input. Consequently,
tlre control of the stochastic system needs very robust con-
trol law such that LCQ) contrel and various kinds of Kalman
filters{8].

Adaptive comrol is other choice of a nonlinear svstem
coutrol.  Over the last 3 decades, adaptive control the-
ory has evolved as a powerful methodology fur designing
nonlinear feedback controllers for system with parametric
uncertainty{2i. Hesvever, in the nonlinear control system,
adaptive crmtrol was not seriously considered until recently.
The reason is that sdaptive contrel law is basically based
on the linear system, thus, it was very difficult to apply
to the nonlinear system. Recently, ss the techniques in
adaptive control of nonlinesr svstems were facilitated by
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advances in geometric nonlinear control theory, in particu-
lar, feedback linearization method!s!, new adaptive control
strategies such as the backstepping procedure, tuning fune-
tions, has been developed.

Neural network techniques have been found to be par-
ticularly useful for controlling highly uncertain, nonlinear,
and complex systems. The feasibility of applying neural
network architecture for modeling unknown functious in
dynamic environments has been demonstrated by several
studies. Most of these studies are based on gradient tech-
niques for deriving parameter adaptive law for system iden-
tification. While such schemes are perform well in many
cases, in general, there are no systematic snalytical meth-
ods of ensuring the stability, robustness, and performance
properties of the overall systems.

In an attempt to overcome these problems, there have
been recent studies of neural network learning algorithms
based on Lyapunov's stability theory, The advantage of
these training method is that the adaptive law is derived
based on the Lyapunov synthesis law and therefore guar-
antee the stability of the system.

Even though the adaptive control law of nonlinear sys-
tem control with neural network is derived by Lyapunov’s
theory, there exist s critical problem. Sinee most neural
network includes the nonlinear functions such as hyper-
bolic tangent. Gaussian distribution funetion and various
kinds of penalty functions, it is very diffieult to develop a
certain canonical control law for general case of nonlinear
systems. In many cases, therefore, derived control law is
well worked in a stability guaranteed region or for some
particular nonlinear system.

In addition, it is necessary to develop a novel state space
model of neural network. In the noulinear system control
using the feedback linesrization method, the nonlinear sys-
tem is deseribed as the linear state space model called as
§tate space miodel of neurdl network, i1t may be easy to
develop the eontrol law for nonlinear system control using
neural network .

Furthermaore, the fesdback linearization for stochastie
nonlinear system control needs some additional filtering
condition. In attempt to control the stochastic nonlinear
system, it is very reasonable viewpoint that states describ-
ing system dynatnies have to be estimated eorreetly in the
environment of white noise. However, in marked contrast
to the case of linear system, the state transition probabil-
ity has a purely nomlinear transition property governed by
estimation {Lie) algehra {3, Therefore, an innovation pro-
cens generated by the difference of a system output and
estimated output is not defined globally, thus, the conven-
tional Kalman-Buey filter or extended Kalman filter cannot
work correctly in whole B®.

Consequently, the introduction of an additional filter-
ing condition is prerequisite to a stochastic nonlinear sys-
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tem with the feedback linesrization. snd using the filtering
condition, the state estimation of nonlinear svstem with
feedback linearization ean be transformed the comrentional
linear stochastic svster
This paper organiz .1 as follows. Section 2 diseuss the
basic theary of the paper such that feedback linesrization,
neursl network, the filtering eoudition of stochastic nonlin-
e with feedbaek linearization. In section 3. the
adaptive control law for neursl network controller of the
nonlinear systemn with linearization input is previded. Fi-
nally. seetion 4, 3 represents the computer simulation of the
propesed contrel algorithm and conelusion, respectively.

2, FUNDAMENTAL THEORY
2.1. Feedback Linearization
Consider the following single input single output systenm[s

Fia) +
hix)

Fom= gle)u

..... (1)
where x is time dependent system state vector such that
x e R f. g his ©F functionals mapping B inte B, B
into A" and R™ into R, respectively and v is system output
such that y 4 A.

Suppose that there exist the relative degree r which is
r & Z{0.n] [6; such that the row vectors of differential

h(a®), dL rh(z"), ... dL} ™ h{z?) (2

e

are linearly independent, where Lphfz) is the Lie deriva-
tion for A{x) along with the vector field f{z). Then, the
feedback linearization input u is obtained as follows [6]:

1 1’)

i L, L7 Rz

PR -
( Lihix) + {2
where # is reference input.

The state feedback u transform the given nonlinear sys-
tem (1) 1o the following linesr system with the coordinate

transform z = ®{x).
£ =4Az+ By
g = gl2) Yie Zir + 1,0 {4)
y = Cx

where 4, B, C are matricessuch that 4 « ™" B« R".¢7 o

R" and are detailed as follows

0 1 0 o g
00 1 o ]

A= B=| -
00 0 1 0 {5}
000 o 1

= (1,0, 0)

If the relative degree r equals to n, then the zero dynamics
Zir -+ 1,0} is diminished. It is similar to
nf)n zeTo s.}"stem in linear system, thus the zere dynamies iz
absolutely stable. The nonlinear system with an absolutely
stable zers dynamices is called as minimum phase system!1}.
The discussion in the paper is only sbout the minimum
phase syster.

2.2, The Filtering Comdition for Feedback Lineariza-
tion

Let (0, F, P) be a probability space and | ,,t O he
a ﬁltmtlrm defined on it. A pmco»ﬁ ’!1 0 > O is vallml

T

an Fy mmxuml}l@ Wiener process
wp . F(W, . Wit o 8) is iudepmdent wf -l‘r';‘it = 0
the unrenwutn e e are normally distribution with mean
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O and variance ¢? >

dX, = (N gl X Ju) dE -+ b{ X 3B (69
Yoo iu.\r}
whete Xy ¢ 8" and Y7 ¢ R are both # messursble Tt

stochastic process and sample path continuous. [ s an R®
valued veetor field such that f is second chffowmmblu oo
tinuous and has compset support Le, f &

In attempt to abtain the filtering condition, define the
following infinitesimal operator

Definition 1 fet Xv be the To process defined by 6 and
£ o CRR™). Then [ in the domain of the infinstesimal
operator Lyy te. [ o '[.‘EM such that

(7

where H{Wix)) i o0 Hesglan of Wia} .
an eperator HyW(x) such that

In addition, define

HyW (e)bgr) < H(¥()h(x) (%)

Furthermore, to use the stochestic differentind geometry,
introduce the following definition{7].

Definition 2 The space A s the family of all continuous
locally square integrable martingales Af, relutive to Fy such
that Mp =0 as.

The -';pa(z A i3 the the family of all eontinuous 7y adapted
- Ay 48 of dounded vari-
at*an on eue’ry fm{E ‘ntert}al .8

The space B is the the famidy of all predictable Fy pro-
cess By such thai, w.pd, € — O i of bounded on each
hounede interval a.s.
The apace O i3 the totality of quasimartingales such as
w4 defined on Fy

“

Since all Tto process X: is quasimartingale, it is ressonable
to let dC = {dX, 1 X¢ & O}, d = {dM, 1 M, ¢ M}, and
dA = {dd, : 4, « A}. Moreover. the following lemma ean
be introduced.

Lemma 1 The following slochustic differentinl space prop-
erties are hold
dQ - d) o dA, dd - dO

=0, d? < d - (93

Through the Definition 1 to Lemma 1, the following prapo-
sition is obtained 4]

Propuosition 1 In the nunimum plurse nondinear system,
if the velative degree v sa¥tisfies the following filter condition

L& ,bh(r") = 0¥e e Bla®. ), 0o i< r -
. -1 +
Bf“d’hfx )LL‘ CREYY =0 ,
{10
and the relative degree v satisfies the following
Ly['! f,h[J, ) N S | (10
then the coordinate transform function F e d’(l:} - dn
is derived such that
d*h(Xy) = 0% .K,I?l'r)(}’t vk (121
dhiXe) = v+ Lelly ‘iz, k=1r R
with the following pathwise state feedback
1w ! k """ Ly ph{X, )+ (13

L,Ch,Thix,)



{?)‘l.’l)f :Incase ol =0, 1 < v, since LyhiXg) = 0 and
LoC oi(X0) = 0 by assumption, we obiain the following
equation.

dhi(X,) s (LrR(X,) + Lyh{X,) +
+Lph(Xe 3edWe

$Heh (X)) dt
(14)

In addition, for # = 1, the equation for d?R{X,) is

Ly £ ph(Xe)dt & Lo L pshi X0 )dWr
= ((Lf (L!h()\'t) + %H&,h(.\}))
+5Hy (Lph(X0) + 3Hoh(X 1))

v Lg (Leh(X0) + HuR(X,))
Lo Ly eh( X0 )dW,

w (L3 G h{Xe) + Loy p) dt

L b'l'.: oK dW

= 23 L h(Xe)dt

(1%

since LpLpah(Xe) = 0 and Ly Ly ph(X,) = 0 because i < 1.
Assume that the following equation is true for & such
that r > k+ 1,

d R(X:) = CF ph( X )elt (16)
then, the differential ¢**'A{X,) is calculated by
AR = (L A(X) + gH LG ph(X)
Lo LEph{X )t + Ly£§ yh(X, )W,
= (CELIR(XG) + Lyl k(X)) dt 1D

ALy L% R XYW,
= AL VR(X, Yt
sinee Lyl h(X,) = 0 and Ly 05 ,h(X) = 0
In contrast to the case of r > b+ 1, for k = r - 1, the
differential d"h({X,) is as follows :
dhiXe) = (LT (X + $H L] (X0
+Lg L35 X ) udt + Lol hiX, )dW,
= (,r_“};ﬁ_l:mg,z + L-gc;;;’ B(X,) - u)dt
L Ly (X JdW,
. {18)
Consequently, since the filter condition Er Dy nexss Lo L‘;-l-)l
A :
0 is hold. if the control  is given by w = a{x)+ 3(x)v. then
u is derived by the equation (18] as follows :
d"R(X¢)

f”urrm;x,)

=EFp o (L7 ph(X0) + La £l h(Xe) - u) dt

HEFp g, IR HX AW,
= (£76h(X0) + Lo £33 A(X0) - u) dt =

= LY ph(X) + Le L33 WX ) - u
(19)
{Q.ED)

However, in the Proposition 1, since LyCk ;'h(;zr)clw}
is not a linear term, the noise term in stochastic feedback
linearization system dees not represent a linear form. gener-
ally. Henee, it is necessary that bz} have to be constructed
i order that Ly .ﬁ';;liz(;t)dilei be linear or finds optimal lin-
ear, noulinear filter strategy such that Bene$ filter i3]

3. ADAPTIVE CONTROL USING NEURAL
NETWORK FOR MINIMUM PHASE STATE
FEEDBACK LINEARIZATION SYSTEM

Tu the paper, neural network is not used as estimated sys-
tem but used as pure adaptive controller. Therefore, learn-
ing equation based on the gradient rule for the conven-
tional error function have to be modified as the gradient

rule based on a Lyapunov funetion for the system. Sub-
sequently, since neural network is not a estimated model,
there have to exist a reference model such that

Zgm «"{mgm "" B, €20

Y = e+ Dt
where A, © B"™ By ¢ B Cp & R, Dy ¢ B and
up ¢ R is control input. In order to induce the neursl net-
work control law, the following assumptions are predefined.

Assumption 1 There erist a solution P of the Lyapunov
equation such that

20

where P and Q are ¢ positive definite n by n matriz. In
addition, the control input of linearization system is defined
as foltows

= - LIOEY. Xy ) + e (22

where L is a pole placement function and 6(1) is parameter

Sinece the neural network is used as the pole placement fune-
tion. the output of neural network have 1o be linear function
of weight and the ontput of previous layer. Since the per-
ceptron with pure linear output is a linear combination of
weight and state vector, the neural network as pole place-
ment controller is designed with 1 perceptron tuned by the
error value defined as follows:

€y = Z‘ - Ty (23)

where Z, is the coordinate transformed state vector such

(24)

where y ¢ R is adaptation gaiu such that 0 < 5« 1. Soas
to analysis the equation (24), set the following sssumption.

hf{at) =

Assumption 2 There exist the coordinate transformed kin-
ear system and refevence model such that

dZ, = (AZ, + Buldi + I'dW,

Y, =CZ, .
Zm = AmZm + Bue {Za}
Ym = O

and the pole placement function is a Knear combination
such that

(26)

In addition, there exist a relation betwesn A ond Ay, such
that

Ap = A B“"(ﬂ«’ (27)
From the equation (23}, (25), the error dynamics Is

BL{BUENZ, + Bty ~ Apim ~ Buy)dt -+ TdW,
- BLIOUNZe -+ AmZi — AmZe
= Aty 4 (A - BLIOIY) — Am)Zptlt + TdW,

(28)
Sinee the perceptron is pole placement controller, substi-
tute (?77) to the equation (26), then the equation {30 is

medified as follows @

dev =5 Amer + (A~ BWE) -~ Am)Zedt + TdW,  (26)

20 -
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Since the equation {27 and &, = W{t), the stochastie dif-
ferential of Lyapunoy function is that

dvy = 2de] Pe, (o 2y
F Aty + (A
-+ ;,_F( L€ + A

+ (W) -

BW ()
BH [£3]

ik

}" Ln !m f.qh?s)

=3 ﬁ.i;!)_.l BT pe i {(Wity -

A+ BWIO) Zudt -+

H“ n)

. -'?Za '
s pdW I Pey

[H g winy

f?ﬂi

Sinee ZF (Wit} - wioy"
NiTip, st~
ferr01) is conv erted as follows:

avi= Dol gel s yirip

(31

Therefore, the following proposition can be obtained.

Proposition 2 If thers exisl positive defintie aymin&tw
matriv @ auch that su wmmal p, then

i
the learning equation of neural mntwufr which makes sys-
tem to be stabilized such that

oW (t iy
o

{32)

The equation (32) is hold, then the system input is as fol-
tows:

= W + e (33)
4. SIMULATION RESULTS

The proposed eontrol law and filtering condition is verified
with single input single cutput (SISOjneulinear system. In
the computer simulation, & considered nonlinear svstem is
the elastic coupling one-link system of which dynamies is
as follows

. K .
Jigy - Frgy + \,( —,;; i=T {34)
Jagy + Fadge -+ Kiga %—) ~+ mgdeosigy) =0 (3%)

in which J; and Fy represent inertia and viscons friction
constants, K the elacity constant of the spring which rep-
resents the elastic coupling with the joint, N the trans-
mission gear ratio, T i torgue produced at the actuator
axis. m and d represent the mass and the position of the
center of gravity of the link. respectively. The equaticn
{34) is called as the actuator equation and (35) ix ealled as
the link equation. In order 1o satisty the filtering condi-
ti(m a noise effect vector b is set as {0,0,07%,0) such that

“““ = 1L The elmractcmnc equation of the basie model is
C’(«) A L8857 46,9554 1.5, In this simulation, the
reference muclel is the basic linear system deseribed as €(s)
inehuding LQ controller. In the comparison to the conven-
tional 1O controller, the proposed control law represents a
better performance than L controller. The mean square
error of the proposed algorithm iy 10.086 and that of LQ
control is 2211,

5. CONCLUSIONS

In this paper, the pole placement type adaptive neural net-
work controller for a nonlinear systein with state feedback
linearization is provided. In addition, the filtering condition
for state feedback in stochastic nonlinear system, However,
the work of pure nonlinear filtering using estimation slge-
bra and the development of a robust filtering algorithm is
still retmains.
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