• Title/Summary/Keyword: K-linearization

Search Result 524, Processing Time 0.026 seconds

LMI Based L2 Robust Stability Analysis and Design of Fuzzy Feedback Linearization Control Systems (LMI를 기반으로 한 퍼지 피드백 선형화 제어 시스템의 L2 강인 안정성 해석)

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.582-589
    • /
    • 2003
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included Un the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

Robust Tracking Control of a Ball and Beam System using Optimal Bang-Bang Input (최적의 Bang-Bang 입력을 이용한 볼-빔 시스템의 강인한 추적 제어)

  • Lee, Kyung-Tae;Choi, Ho-Lim
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.110-120
    • /
    • 2018
  • In this paper, we apply the input-output linearization technique to tracking the follow-up trajectory r(t) in the ball-beam system. There exist system disturbance and various uncertainties, the conventional input-output linearization based control yields some noticeable errors in tracking performance. As a result, a new robust control technique for the uncertainty of the system was proposed and its improved performance verified through simulation and experimental results. So, more realistic system model is obtained with unmatched uncertainties and disturbance. Then, in order to improve the control performance, a new optimal bang-bang control input is additionally added.

A New Calibration Method Based on the Recursive Linear Regression with Variables Selection

  • Park, Kwang-Su;Jun, Chi-Hyuck
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1241-1241
    • /
    • 2001
  • We propose a new calibration method, which uses the linearization method for spectral responses and the repetitive adoptions of the linearization weight matrices to construct a frature. Weight matrices are estimated through multiple linear regression (or principal component regression or partial least squares) with forward variable selection. The proposed method is applied to three data sets. The first is FTIR spectral data set for FeO content from sinter process and the second is NIR spectra from trans-alkylation process having two constituent variables. The third is NIR spectra of crude oil with three physical property variables. To see the calibration performance, we compare the new method with the PLS. It is found that the new method gives a little better performance than the PLS and the calibration result is stable in spite of the collinearity among each selected spectral responses. Furthermore, doing the repetitive adoptions of linearization matrices in the proposed methods, uninformative variables are disregarded. That is, the new methods include the effect of variables subset selection, simultaneously.

  • PDF

The optimal control for a nonlinear system using the feedback linearization (피드백 선형화를 이용한 비선형 시스템에 대한 최적 제어)

  • Lee, Jong-Yong;Lee, Won-Seok
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.3
    • /
    • pp.25-30
    • /
    • 2005
  • Nonlinear optimal control problems lead to Hamilton-Tacobi equations which are not analytically solvable for most practical problems. This difficulty has led to the development of suboptimal nonlinear design techniques such as controller design based on feedback linearization(FL). In this paper, we present some simple examples where the optimal answer can be found for the optimal controller, FL controller and linear controller and determine its relative performance. As a result, we get the condition of a nonlinear system for the FL controller to an optimal design.

Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

  • Zaidabadi nejad, M.;Ansarifar, G.R.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.97-106
    • /
    • 2018
  • Improved load-following capability is one of the most important technical tasks of a pressurized water reactor. Controlling the nuclear reactor core during load-following operation leads to some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking: the core is subjected to sharp and large variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent the core power peaking. One of the important local power peaking components in nuclear reactors is axial power peaking, which continuously changes. The main challenge of nuclear reactor control during load-following operation is to maintain the AO within acceptable limits, at a certain reference target value. This article proposes a new robust approach to AO control of pressurized water reactors during load-following operation. This method uses robust feedback-linearization control based on the multipoint kinetics reactor model (neutronic and thermal-hydraulic). In this model, the reactor core is divided into four nodes along the reactor axis. Simulation results show that this method improves the reactor load-following capability in the presence of parameter uncertainty and disturbances and can use optimum control rod groups to maneuver with variable overlapping.

A Performance Comparison of the Partial Linearization Algorithm for the Multi-Mode Variable Demand Traffic Assignment Problem (다수단 가변수요 통행배정문제를 위한 부분선형화 알고리즘의 성능비교)

  • Park, Taehyung;Lee, Sangkeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.4
    • /
    • pp.253-259
    • /
    • 2013
  • Investment scenarios in the transportation network design problem usually contain installation or expansion of multi-mode transportation links. When one applies the mode choice analysis and traffic assignment sequentially for each investment scenario, it is possible that the travel impedance used in the mode choice analysis is different from the user equilibrium cost of the traffic assignment step. Therefore, to estimate the travel impedance and mode choice accurately, one needs to develop a combined model for the mode choice and traffic assignment. In this paper, we derive the inverse demand and the excess demand functions for the multi-mode multinomial logit mode choice function and develop a combined model for the multi-mode variable demand traffic assignment problem. Using data from the regional O/D and network data provided by the KTDB, we compared the performance of the partial linearization algorithm with the Frank-Wolfe algorithm applied to the excess demand model and with the sequential heuristic procedures.

Nonlinear Sensorless Control of Indution Motor by using Feedback Linearization and Current Error (궤환 선형화 및 전류오차를 이용한 유도전동기 비선형 센서리스제어)

  • Seo Kang-Sung;Jeong Sam-Yong;Jung Byung-Ho;Lee Kang-Youn;Cho Geum-Bae;Baek Hyung-Lae
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.272-275
    • /
    • 2001
  • In this paper, author consider the nonlinear control by using feedback linearization for independent control and estimation algorithm such as speed, rotor flux and rotor resistance to achieve sensorless control of induction motor. The dynamic characteristics of the proposed nonlinear control algorithm is verified by simulation.

  • PDF

Bidirectional Platoon Control Using Backstepping-Like Feedback Linearization (역보행 제어 형태의 궤환 선형화를 이용한 양방향 플래툰 제어)

  • Kwon, Ji-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.410-415
    • /
    • 2013
  • This paper proposes a bidirectional platoon control law using a coupled distance error based on the backstepping-like feedback linearization control method for an interconnected mobile agent system with a string structure. Unlike the previous results where the single agent was controlled using the only own information without other agents, the proposed control law cannot show the only distance error convergence of each agent, but also the string stability of the whole system. Also, the control performances are improved by the proposed control law in spite of low performance of bidirectional control strategy in the previous results. The proposed bidirectional platoon control algorithm is based on the backstepping-like feedback linearization control method. The position errors between each agent and the preceding and the behind agents are coupled by weighted summation. By the proposed control law, the distance error of each agent can converge to zero while the string stability is guaranteed when the coupled errors can converge to zero. To this end, the back-stepping control method is employed. The pseudo velocity input is determined considering the kinematic relationship between agents and the string stability. Then, the actual dynamic control input is determined to make the actual velocity converge to the pseudo velocity input. The stability analysis and the simulation results of the proposed method are included in order to demonstrate the practical application of the proposed algorithm.

A new Observation Model to Improve the Consistency of EKF-SLAM Algorithm in Large-scale Environments (광범위 환경에서 EKF-SLAM의 일관성 향상을 위한 새로운 관찰모델)

  • Nam, Chang-Joo;Kang, Jae-Hyeon;Doh, Nak-Ju Lett
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • This paper suggests a new observation model for Extended Kalman Filter based Simultaneous Localization and Mapping (EKF-SLAM). Since the EKF framework linearizes non-linear functions around the current estimate, the conventional line model has large linearization errors when a mobile robot locates faraway from its initial position. On the other hand, the model that we propose yields less linearization error with respect to the landmark position and thus suitable in a large-scale environment. To achieve it, we build up a three-dimensional space by adding a virtual axis to the robot's two-dimensional coordinate system and extract a plane by using a detected line on the two-dimensional space and the virtual axis. Since Jacobian matrix with respect to the landmark position has small value, we can estimate the position of landmarks better than the conventional line model. The simulation results verify that the new model yields less linearization errors than the conventional line model.

A Study of Anti-sway Control for a Ship-mounted Contrainer Crane (부유체 위에 고정된 크레인의 안정화 제어기 설계에 관한 연구)

  • Min, Hyung-Gi;Cho, Jae-Dong;Kim, Ji-Hoon;Kwon, Sung-Ha;Jeung, Eun-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.727-734
    • /
    • 2010
  • This paper deals with an anti-sway control for a ship-mounted container crane which is disturbed by the wave-induced motions of the ship. We derive a simple dynamics of the ship-mounted container crane with an active anti-sway control system and transform it into a dynamic function for a horizontal variable on the absolute coordinate. Then we propose an control method to reduce pendulation of the spreader and compare its performance with well-known feedback linearization control in computer simulation.