• Title/Summary/Keyword: K-factor estimate

Search Result 1,115, Processing Time 0.027 seconds

Methods and Applications to estimate the Conversion Factor of Resource-based Relative Value Scale for Nurse-Midwife's Delivery Service in the National Health Insurance (조산원(助産院)의 분만간호서비스에 대한 건강보험수가 산출방법과 적용방안)

  • Kim, Jin-Hyun;Jung, Yoo-Mi
    • Journal of Korean Academy of Nursing
    • /
    • v.39 no.4
    • /
    • pp.574-583
    • /
    • 2009
  • Purpose: This paper analyzed alternative methods of calculating the conversion factor for nurse-midwife's delivery services in the national health insurance and estimated the optimal reimbursement level for the services. Methods: A cost accounting model and Sustainable Growth Rate (SGR) model were developed to estimate the conversion factor of Resource-Based Relative Value Scale (RBRVS) for nurse-midwife's services, depending on the scope of revenue considered in financial analysis. The data and sources from the government and the financial statements from nurse-midwife clinics were used in analysis. Results: The cost accounting model and SGR model showed a 17.6-37.9% increase and 19.0-23.6% increase, respectively, in nurse-midwife fee for delivery services in the national health insurance. The SGR model measured an overall trend of medical expenditures rather than an individual financial status of nurse-midwife clinics, and the cost analysis properly estimated the level of reimbursement for nurse-midwife's services. Conclusion: Normal vaginal delivery in nurse-midwife clinics is considered cost-effective in terms of insurance financing. Upon a declining share of health expenditures on midwife clinics, designing a reimbursement strategy for midwife's services could be an opportunity as well as a challenge when it comes to efficient resource allocation.

MASS ESTIMATE TECHNIQUES OF MOLECULAR CLOUDS

  • Lee, Young-Ung
    • Publications of The Korean Astronomical Society
    • /
    • v.9 no.1
    • /
    • pp.55-68
    • /
    • 1994
  • We have reviewed three different techniques to estimate molecular cloud mass, and discussed the uncertainties involved. We found that determination of the most important parameter, the $^{13}CO$ abundance, is not very sensitive to the real LTE conditions, and that any possible error in deriving LTE column density may not introduce an error in the total gas column density, as far as the visual extinction is established for the object cloud. The virial technique always endows the largest mass estimate as there are several uncertainties, even if the cloud is in virial equilibrium. The strong indicator of the cloud perturbation is the centroid velocity dispersion. The mass using CO luminosity is based on the empirical law, but weakly dependent on the virial assumption, thus it still gives a larger mass estimate. The mass discrepancy is likely to be inevitable, and a factor of two or three difference between mass estimates could easily be attributed to the uncertainties mentioned above. The LTE mass estimate may be the most reliable one if we use the relation visual extinction and $^{13}CO$ column density of the object cloud, and the intercept is included.

  • PDF

Development of a Method to Estimate the Seasonal Heating Load for Plastic Greenhouses (플라스틱 온실의 기간난방부하 산정 방법 개발)

  • Nam, Sang Woon;Shin, Hyun Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.37-42
    • /
    • 2015
  • In order to provide fundamental data for the creation of environmental design criteria for horticultural facilities, we developed a method to easily calculate the seasonal heating load applying heating degree-hour while taking into account heating load reductions due to solar radiation in the daytime, and reviewed through greenhouse heating experiments. Heating experiments and measuring meteorological environments were carried out in three greenhouses located at Buyeo, Cheonan, and Buan, and we derived reduction factors of seasonal heating load according to hours of sunshine. Daily mean hours of sunshine during the experiment period in each of the greenhouse was 4.0 to 8.3 hours, and the reduction factor of seasonal heating load was 0.64 to 0.85, has been shown to decrease linearly with the increase in hours of sunshine. A method to estimate the seasonal heating load for greenhouses was developed using the reduction factor of seasonal heating load derived from the greenhouse heating experiment, including the adjustment factor of seasonal heating load according to hours of sunshine. The developed method was validated through heating experiments in a greenhouse located at Cheonan. Greenhouse seasonal heating loads calculated by the method developed in this study were analyzed to show the estimate error of 1.2 to 5.0%. It showed that the accuracy increased 2.3 times more than when using the heating load reduction factor of 0.75 applied uniformly in previous studies. Thus, the calculation method of seasonal heating load for greenhouses considering hours of sunshine developed in this study could be utilized for energy estimation, management planning, and economic evaluation in greenhouse design.

Estimation of Ultrasound Attenuation Coefficient by Homomorphic Deconvolution Method (Homomorphic Deconvolution 법에 의한 초음파 감쇄정수 추정)

  • Hong, Seung-Hong;Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.39-46
    • /
    • 1984
  • In order to improve the performance of ultrasonic diagnostic equipment, it is important to development the signal processing considering the ultrasonic properties of biological medium and propagation mechanism in tissue. Attenuation coefficient is not only important factor to analyze propagation properties, but also it is significant to estimate it in view of tissue characterization, so we show one of the method to estimate attenuation coefficient of biological tissue and the results of estimation.

  • PDF

A new approach to estimate the factor of safety for rooted slopes with an emphasis on the soil property, geometry and vegetated coverage

  • Maedeh, Pouyan Abbasi;Wu, Wei;da Fonseca, Antonio Viana;Irdmoosa, Kourosh Ghaffari;Acharya, Madhu Sudan;Bodaghi, Ehsan
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.269-288
    • /
    • 2018
  • 180 different 2D numerical analyses have been carried out to estimate the factor of safety (FOS) for rooted slopes. Four different types of vegetated coverage and a variety of slope geometry considering three types of soil have been evaluated in this study. The highly influenced parameters on the slope's FOS are determined. They have been chosen as the input parameters for developing a new practical relationship to estimate the FOS with an emphasis on the roots effects. The dependency of sliding mode and shape considering the soil and roots-type has been evaluated by using the numerical finite element model. It is observed that the inclination and height of the slope and the coverage type are the most important effective factors in FOS. While the soil strength parameters and its physical properties would be considered as the second major group that affects the FOS. Achieved results from the developed relationship have shown the acceptable estimation for the roots slope. The extracted R square from the proposed relationship considering nonlinear estimation has been achieved up to 0.85. As a further cross check, the achieved R square from a multi-layer neural network has also been observed to be around 0.92. The numerical verification considering different scenarios has been done in the current evaluation.

Evaluation of Life Time for Anti-Corrosive Methods for Marine Steel Sheet by Cyclic Corrosion Test (실내 가속부식시험을 통한 해양 강관합성 말뚝의 방식 기법 수명 평가)

  • Park, J.W.;Lee, J.G.;Lee, K.W.;Kim, J.H.;Jung, M.K.;Lee, J.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.243-250
    • /
    • 2009
  • When a steel sheet pipe applied to marine environment, an anti-corrosive coating should be treated to obtain long-term life-time for steels, especially, splash zone. Although anti-corrosive property of coatings is required to be tested in real marine environment, it is difficult because of long test time such as 20 years or more time. Therefore, we used cyclic corrosion tester in a laboratory, which has similar conditions with salt-dry-wet process such as real marine environment. Anti-corrosive properties of the coatings and two steels were tested their anti-corrosive properties under cyclic corrosion test conditions(KS D ISO 14993) and the results were compared with estimate life-time in real marine environment. According to cyclic corrosion test, accelerated corrosive factor of each anti-corrosive coating was investigated accelerated corrosive factor from impedance with EIS method. Accelerated corrosive factor of type SS400 carbon steel and A690 was also investigated their accelerated corrosive factor from the regression curves of weigh loss results. One of the anti-corrosive coatings showed about 50 years life-time compared with standard sample life-time. Carbon steel SS400 showed from 0.1 mm/yr to 0.06 mm/yr as its corrosion rate.

Electric Current Accelerated Degradation Test Design for OLED TV (OLED TV Panel의 전류가속열화시험 설계)

  • You, Ji-Sun;Lee, Duek-Jung;Oh, Chang-Suk;Jang, Joong Soon
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • Purpose: The purpose of this study is to estimate the life time of OLED TV panel through electric current ADT(Accelerated Degradation Test). Methods: We performed accelerated degradation test for OLED TV Panel at the room temperature to avoid high temperature impact on the luminance. Results: we got more accurately the life time of the OLED TV when we applied ADT without temperature factor than including both current and temperature. Conclusion: Until now, the ADT of the OLED TV has been conducted with temperature and current at the same time for reducing test time and costs. We estimate incorrect life time when the temperature is adopted as an accelerated factor. Due to the high temperature impact on the luminance of the OLED TV panel. So as to solve this problem, we discard temperature and use electric current only.

Prediction of Safety Critical Software Operational Reliability from Test Reliability Using Testing Environment Factors

  • Jung, Hoan-Sung;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.49-57
    • /
    • 1999
  • It has been a critical issue to predict the safety critical software reliability in nuclear engineering area. For many years, many researches have focused on the quantification of software reliability and there have been many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. User's interest is however on the operational reliability rather than on the test reliability. The experiences show that the operational reliability is higher than the test reliability. With the assumption that the difference in reliability results from the change of environment, from testing to operation, testing environment factors comprising the aging factor and the coverage factor are developed in this paper and used to predict the ultimate operational reliability with the failure data in testing phase. It is by incorporating test environments applied beyond the operational profile into testing environment factors. The application results show that the proposed method can estimate the operational reliability accurately.

  • PDF

Prediction of Dynamic Expected Time to System Failure

  • Oh, Deog-Yeon;Lee, Chong-Chul
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.244-250
    • /
    • 1997
  • The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent Property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability's or components are combined, which results in the dynamic MTTF or system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not.

  • PDF

Effects of Changing Weighing Factor in a Two Stage Shrinkage Testimator for the Mean of an Exponential Distributions

  • Myung-Sang Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.895-904
    • /
    • 1998
  • Two stage shrinkage testimator is a kind of adaptive estimators based on a test on an initial estimate of parameter. Since weighing factor plays an important roll in assessing the properties of testimator, its choice is extremely crucial in two stage testimation. Adke, Waikar and Schuurmann(1987) proposed a testimator for the mean of an exponential distribution defined with their own weighing factor. Two alternative testimators obtained using changed weighing factors are presented, and their Mean squared error(MSE) formulae are provided in this paper. Their properties are compared with those of existing one by means of MSE.

  • PDF