• Title/Summary/Keyword: K-based absorbent

Search Result 48, Processing Time 0.026 seconds

Substituent Effect in the Reaction of Carbon Dioxide with Amine-Based Absorbent (치환기 특성에 따른 아민흡수제와 CO2의 반응특성 평가)

  • Shim, Jae-Goo;Lee, Junghyun;Jung, Jin-Kyu;Kwak, No-Sang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2020
  • The reaction of carbon dioxide with the amine-based absorbents which have various substituents in the molecule was described. In the case of MEA which is a representative primary amine, the absorption reaction was proceeded very fast while the regeneration reaction was took place slowly due to the strong bond strength between the absorbent and carbon dioxide. The more substituents on N atom of the absorbent, the slower the absorption reaction between carbon dioxide and the absorbent, which in turn causes faster the regeneration rate from the reaction intermediate, carbamate.

The Characteristics of Attrition of Absorbents for Pre-combustion CO2 Capture (연소 전 CO2 포집 흡수제들의 마모특성)

  • Ryu, Hojung;Lee, Dongho;Moon, Jongho;Park, Youngcheol;Jo, Sungho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.428-436
    • /
    • 2013
  • Attrition characteristics of $CO_2$ absorbents for pre-combustion $CO_2$ capture were investigated to check attrition loss of those absorbents and to determine solid circulation direction and the better $CO_2$ absorbent. The cumulative attrition losses of two absorbents increased with increasing time. However, attrition loss under a humidified condition was lower than that under a non-humidified condition case. Between two absorbents, attrition loss of PKM1-SU absorbent was higher than that of P4-600 absorbent. The average particle sizes of the attrited particles were less than $2.5{\mu}m$ for two absorbents under a non-humidified condition case, and therefore, we could conclude that the main mechanism of attrition for two absorbents is not fragmentation but abrasion. Based on the results from the test for the effect of humidity on the attrition loss, we selected solid circulation direction from SEWGS reactor to regeneration reactor because the SEWGS reactor contains more water vapor than regeneration reactor. Attrition loss and make-up rate of two absorbents were compared based on the results from $CO_2$ sorption capacity tests and attrition tests. Required make-up rate of P4-600 absorbent was lower than that of PKM1-SU absorbent. However, more detail investigation on the optimum regeneration temperature, manufacturing cost, solid circulation rate, regeneration rate, and long-term sorption capacity should be considered to select the best $CO_2$ absorbent.

Desulfurization Efficiency of Lime Absorbent in In-Furnace Desulfurization as Fly Ash Binder in Power Plant (발전소 비산재를 결합재로 활용한 로내탈황용 석회 흡수제의 탈황효율)

  • Seo, Jun-Hyung;Baek, Chul-Seoung;Cho, Jin-Sang;Ahn, Ji-Whan;Yoon, Do-Young;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.58-65
    • /
    • 2018
  • For the recycling of coal ash from the domestic circulating fluidized bed boilers, a lime-based sorbent with 0.2~0.4 mm size was prepared by using limestone powder and CFBC fly ash. Mixing a small amount of slaked lime in the lime-based absorbent lead the formation of calcium silicate on the surface of the particle and the strength of absorbent particle was improved. As a result of comparing the desulfurization characteristics, it was found that the conversion rate was about 10% higher than that of commercially available limestone desulfurization used in the furnace, which is confirmed that it can be used as a desulfurization absorbent.

Performance Analysis of Absorbent for Post-combustion CO2 Capture by Regeneration (연소 후 CO2 포집을 위한 흡수제의 재생반응에 의한 성능 해석)

  • KIL, TAEHYOUNG;LEE, DONGHO;JO, SUNGHO;YI, CHANGKEUN;PARK, YEONGSEONG;RYU, HOJUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.83-94
    • /
    • 2016
  • Performance of absorbent for post-combustion $CO_2$ capture was measured and discussed. Fully saturated fresh absorbent (P2-15F) and absorbents sampled from absorption and regeneration reactor of continuous $CO_2$ capture process, P2-15A, P2-15R, respectively, were used as representative absorbents. Small scale fluidized bed reactor (0.05 m I.D., 0.8 m high) which can measure exhaust gas concentration and weight change simultaneously was used to analyze regeneration characteristics for those absorbents. Exhausted moles of $CO_2$ and $H_2O$ were measured with increasing temperature. $H_2O/CO$ ratio and working capacity were determined and discussed to confirm reason of reactivity decay after continuous operation. Moreover, possibility of side reaction was checked based on the $H_2O/CO_2$ mole ratio. Finally, suitable regeneration temperature range was confirmed based on the trend of working capacity with temperature.

Reuse of Treated Sewage Water from Absorbent Biofilter System as Agricultural Water Resources (농업수자원으로서의 흡수성 Biofilter 처리수 재이용)

  • 권순국;김현욱;권용웅;조영현;박상원;임경래
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.151-159
    • /
    • 2003
  • Absorbent Biofilter Systems (ABS), composed of an anaerobic septic tank, a pump chamber and an absorbent biofilter tank, have been found to economically provide rural on-site wastewater treatment. This study was conducted to assess the potential of ABS effluent as an alternative water resource for agricultural and environmental use, with respect to the removal of pathogenic microorganism and their fertilization effect. A pilot scale ABS was used to compare its removal efficiency of pathogens from effluent water. Overall, more than 95 percent of Salmonella and E. coli were removed. This result demonstrates that a significant reduction in the pathogenic microorganism of effluents can occur in ABS, which implies the feasibility for the use of ABS effluent in agriculture and environment, with the provision of a further simple disinfection step, in order to satisfy the WHO guidelines for the microbiological quality in agriculture. In addition, because of the abundant nutritional content of ABS effluent, the substitution effect of fertilizer (N, P and K) in paddy irrigation, i.e. 2/3 for nitrogen, l/3 for phosphorus and 1/5 for potassium would be expected. Based on the experimental data, the ABS effluent could be used as a new alternative water resource for paddy irrigation, as well as for environmental purposes, such as supplying water to ecological parks in rural villages.

Swelling Behavior of Low Toxic Absorbent Based on Biopolymer (생물고분자로 이루어진 저독성 흡수제의 팽윤거동)

  • Jung, Jin Hee;Kim, Jin;Lee, Ki-Young
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.478-485
    • /
    • 2013
  • In this study, hydrogels with fast swelling and high absorbent properties were prepared using biopolymers approved as a food additive and their swelling properties were characterized. To improve the swelling properties of conventional hydrogels, we formed gas bubbles using a foaming agent in the process of preparing hydrogels and characterized in terms of equilibrium swelling ratio, swelling kinetics and cytotoxicity. In particular, alginate hydrogels observed by a digital microscope have an open-pore channels structure with the sizes of hundreds micrometers. Also, the cell viability of all hydrogels were found to be much higher than that of poly(acrylic acid).

Research on Characteristics of Multifunctional Soil Binder Based on Polyacrylamide (폴리아크릴아마이드를 기반으로 하는 다기능성 토양안정제의 특성에 관한 연구)

  • Kim, Jin Kyung;Kim, Dae Ho;Joo, Sang Hyun;Lee, Myung Cheon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-161
    • /
    • 2018
  • For the efficient recovering of collapsed sloped soil, using a soil binder that can support the soil strongly and help the growth of plants is very important. The soil binder should also have functions of recovering the soil ecologically as well as be environmental friendly materials. In this research, optimum values of the water content and permeability and direct shear strength were searched by adding the water absorbent and coagulant into the soil binder. The polyacrylamide (PAM) with various anionic strength, super absorbent polymer (SAP) and cellulose ether (CE) were used as a soil binder, water absorbent and coagulant, respectively. Effects of the soil binder on the characteristics of soil were observed by changing the mixing ratio of PAM, SAP and CE. Experimental results showed that the soil binder increased the direct shear strength tens of times and the water content around two times, whereas decreased the water permeability. Also, the addition of CE to increase the coagulation of SAP increased more of the direct shear strength and water content.

Effect of Absorbent Materials and Initial Sealed Curing on Drying Shrinkage and Compressive Strength of Hwangtoh Mortar (흡수성 물질과 초기 밀봉양생이 황토 모르타르의 건조수축과 압축강도에 미치는 영향)

  • Kwon, Yang-Hee;Hong, Sung-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.20-29
    • /
    • 2016
  • This study investigates the effect of the absorbent materials on the material properties(compressive strength and drying shrinkage) of natural hwangtoh mortar which is one of the traditional building material in Korea. The absorbent materials used are seaweed paste and Super-Absorbent Polymer(SAP). In addition to the absorbent materials, the initial sealed curing recommended by the standard specification of properties for Korean traditional building materials is also a main interest of this study. Based on the test results of 28 days compressive strength and converged drying shrinkage, it is confirmed that the initial sealed curing for 7 days is effective to reduce the drying shrinkage and to enhance the compressive strength. Thus, it is verified that the recommendation is reasonable and has positive effects on the properties of the mortar. Next, the test results show that the addition of absorbent materials into the mortar is also effective to the two properties depending on their absorption capacity. Thus, it is more effective to use SAP than the seaweed paste because of higher absorption capacity. However, both the initial sealed curing and keeping total water contents of the mortar are required to show this effectiveness. Lastly, the compressive strength is inversely proportional to the drying shrinkage. By using this relation, the reason of the increase of compressive strength due to the initial sealed curing or the addition of absorbent materials is quantitatively explained.

An Evaluation of a super-absorbent polymer as the Nucleating Agent for a Capsule-type Ice Storage System (고흡수성고분자가 조핵제로 첨가된 빙축열용 축열재 개발)

  • Choi, Hyung-Joon;Hong, Seong-Ahn;Park, Won-Hoon
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.28-37
    • /
    • 1990
  • A study was conducted to investigate the feasibility of using a super-absorbent polymer made from a acrylic acid copolymer for a capsule-type ice storage system. In a simple pyrex-tube test, 25% of distilled water samples tested turned out not be frozen at all at $-12^{\circ}C$ and the average supercooling of the samples frozen was $9.8^{\circ}C$. With the addition of 0.5wt% super-absorbent polymer, however, the supercooling of the distilled water was dramatically reduced and more than 35% of samples tested did not show any supercooling. The heat transfer characteristics of a capsule-type ice storage unit was also investigated with a distilled water as the phase-change material. With the addition of 0.5wt% polymer, the supercooling of water was not observed at all and thus an overall heat transfer was enhanced. Based on these results, it was concluded that a super-absorbent polymer is a potential candidate as the nucleating agent for an ice-storage system.

  • PDF

Swelling Behavior of Biodegradable Crosslinked Gel based on Poly(aspartic acid) and PEG-diepoxide

  • Min, Suk-Kee;Kim, Ji-Heung;Chung, Dong-Jun
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.143-149
    • /
    • 2001
  • Poly(aspartic acid), PASP, is a biodegradable, water-soluble polymer and offers a biodegradable alternative to polycarboxylates and other non-degradable water-soluble polymers. PASP one of poly (amino acid)s, possesses carboxylic acid pendant group in its repeating unit, which can be used for various further modification purposes. In this study we prepared high molecular weight polysuccinimide, as the precursor polymer for PASP, by thermal polycondensation ofL-aspartic acid in the presence of phosphoric acid. The polysuccinimide was hydrolyzed with 0.1 N sodium hydroxide, and then acidified to give PASP. High water-absorbent gels were produced by thermal crosslinking of freeze-dried mixture of partially-neutralized PASP and different amount of low moi. wt. PEG-diepoxide compounds in aqueous medium. The swelling behavior of the prepared gels from different size and composition of crosslinking reagent in different media was investigated and the results were discussed. This PASP-based hydrogel materials possessing inherent biodegradability, potential non-toxicity and biocompatibility, is expected to be used as a substrate for various biomedical applications as well as a general purpose super-absorbent polymer.

  • PDF