• 제목/요약/키워드: K-NN

검색결과 797건 처리시간 0.028초

적응형 재귀 분할 평균법을 이용한 메모리기반 추론 알고리즘 (A Memory-based Reasoning Algorithm using Adaptive Recursive Partition Averaging Method)

  • 이형일;최학윤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.478-487
    • /
    • 2004
  • 메모리 기반 추론에서 기억공간의 효율적인 사용과 분류성능의 향상을 위하여 제안되었던 RPA(Recursive Partition Averaging)알고리즘은 대상 패턴 공간을 분할 한 후 대표 패턴을 추출하여 분류 기준 패턴으로 사용한다. 이 기법은 메모리 사용 효율과 분류 성능 면에서 우수한 결과를 보였지만, 분할 종료 조건과 대표패턴의 추출 방법이 분류 성능 저하의 원인이 되는 단점을 가지고 있었다. 여기에서는 기존 RPA의 단점을 보안한 ARPA(Adaptive RPA) 알고리즘을 제안한다. 제안된 알고리즘은 패턴 공간의 분할 종료 조건으로 특징별 최빈 패턴 구간(FPD: Feature-based population densimeter)추출 알고리즘을 사용하며, 학습 결과 패턴의 생성을 대표패턴 추출기법 대신 최빈 패턴 구간을 이용하여 생성한 최적초월평면(OH: Optimized Hyperrectangle)을 사용한다. 제안된 알고리즘은 k-NN 분류기에서 필요로 하는 메모리 공간의 40%정도를 사용하며, 분류에 있어서도 RPA보다 우수한 인식 성능을 보이고 있다. 또한 저장된 패턴의 감소로 인하여, 실제 분류에 소요되는 시간 비교에 있어서도 k-NN보다 월등히 우수한 성능을 보이고 있다.

k-Nearest Neighbor 알고리즘을 이용한 도심 내 주요 도로 구간의 교통속도 단기 예측 방법 (Short-Term Prediction of Vehicle Speed on Main City Roads using the k-Nearest Neighbor Algorithm)

  • 모하메드 아리프 라시이디;김정민;류광렬
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.121-131
    • /
    • 2014
  • 교통속도는 교통 문제를 해결하기 위한 중요한 지표 중 하나이다. 이를 이용하여 교통혼잡 탐지, 주행 시간 예측, 도로 설계와 같은 다양한 문제 해결에 활용할 수 있다. 따라서 정확한 교통속도 예측은 지능형 교통 시스템의 개발에 있어 필수적인 요소라고 할 수 있다. 본 논문에서는 대한민국 부산시의 특정 도로를 대상으로 교통 속도에 대한 분석 및 예측을 수행하였다. 과거 연구에서는 대상 도로의 속도 예측을 위해 과거 대상 도로의 교통속도 이력 데이터만을 사용하였다. 그러나 실제 대상 도로의 교통 상황은 인접한 도로의 교통 상황의 영향을 받게 된다. 따라서 본 논문에서는 실제 부산시의 과거 교통속도 이력 데이터를 기반으로 대상 도로와 인접 도로를 모두 고려하여 교통속도 예측 모델의 학습을 위한 속성을 추출하였다. 이와 같이 후보 속성들을 추출 한 후 선형 회귀 (linear regression), 모델 트리 (model tree) 및 k-nearest neighbor (k-NN) 기법을 이용하여 속성의 부분집합 선택 (feature subset selection)과 교통속도 예측 모델 생성을 수행하였다. 실험 결과 주어진 교통 데이터에서 k-NN 기법은 선형 회귀 및 모델 트리 기법에 비해 평균절대백분율오차 (mean absolute percent error, MAPE)와 제곱근평균제곱오차 (root mean squared error, RMSE) 측면에서 더 나은 성능을 보임을 확인하였다.

스마트폰 가속도 센서 기반의 제스처 인식과 로봇 응용 (Smartphone Accelerometer-Based Gesture Recognition and its Robotic Application)

  • 남상하;김주희;허세경;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권6호
    • /
    • pp.395-402
    • /
    • 2013
  • 본 논문에서는 스마트폰 사용자를 위한 가속도 센서 기반의 제스처 인식 방법을 제안한다. 제안하는 제스처 인식 방법에서는 DTW 알고리즘을 적용하여 새로운 시계열 가속도 데이터와 각 제스처별 대표 훈련 데이터간의 유사도를 측정한 뒤, k-NN 알고리즘을 적용하여 제스처를 판별한다. 본 논문에서 제안하는 제스처 인식 방법의 성능을 분석해보기 위해, 안드로이드 스마트폰에서 동작하는 제스처 인식 프로그램과 이것을 활용한 제스처 기반 원격 제어 로봇 시스템을 구현하였다. 사용자-혼합 및 사용자-독립 실험들을 통해, 본 논문에서 제안한 제스처 인식방법과 구현 시스템이 높은 인식 성능과 확장성을 가진다는 것을 보였다.

Applying Neural Networks to Model Monthly Energy Consumption of Commercial Buildings in Singapore(ICCAS2004)

  • Dong, Bing;Lee, Siew Eang;Sapar, Majid Hajid;Sun, Han Song
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1330-1333
    • /
    • 2004
  • The methodology for modeling building energy consumption is well established for energy saving calculation in the temperate zone both for performance-based energy retrofitting contracts and measurement and verification (M&V) projects. Mostly, statistical regression models based on utility bills and outdoor dry-bulb temperature have been applied to baseline monthly and annual whole building energy use. This paper presents the application of neural networks (NN) to model landlord energy consumption of commercial buildings in Singapore. Firstly, a brief background information on NN and its application on the building energy research is provided. Secondly, five commercial buildings with various characteristics were selected for case studies. Monthly mean outdoor dry-bulb temperature ($T_0$), Relative Humidity (RH) and Global Solar Radiation (GSR) are used as network inputs and the landlord monthly energy consumption of the same period is the output. Up to three years monthly data are taken as training data. A forecast has been made for another year for all the five buildings. The performance of the NN analysis was evaluated using coefficient of variance (CV). The results show that NNs is powerful at predicting annual landlord energy consumption with high accuracy.

  • PDF

Obstacle Avoidance of Quadruped Robots with Consideration to the Order of Swing Leg

  • Yamaguchi, Tomohiro;Watanabe, Keigo;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.645-650
    • /
    • 2003
  • Legged robots can avoid an obstacle by crawling-over or striding, according to the obstacle’s nature and the current state of the robot. Thus, it can be observed that the mobility efficiency to reach a destination is improved by such action. Moreover, if robots have many legs like 4-legged or 6-legged types, then the robot movement range is affected by the order of swing leg. In this paper, the avoidance action of a quadruped robot is generated by a neural network (NN) whose inputs are information on the position of the destination, the obstacle configuration and the robot's self-state. To realize a free gait in static walking, the order of swing leg is determined using an another NN whose inputs are the amount of movements and the robot’s self-state. The design parameter of the latter NN is adjusted by using genetic algorithm (GA).

  • PDF

인공신경망 기반 가스 분류기의 설계 (Design of Gas Classifier Based On Artificial Neural Network)

  • 정우재;김민우;조재찬;정윤호
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.700-705
    • /
    • 2018
  • 본 논문에서는 restricted coulomb energy(RCE) 신경망 기반 가스 분류기를 제안하고, 이의 실시간 학습 및 분류를 위한 하드웨어 구현 결과를 제시한다. RCE 신경망은 네트워크 구조가 학습에 따라 유동적이며, 실시간 학습 및 분류가 가능하므로, 가스 분류 응용에 적합한 특징을 갖는다. 설계된 가스 분류기는 UCI gas dataset에 대해 99.2%의 분류 정확도를 보였으며, Intel-Altera cyclone IV FPGA 기반 구현 결과, 26,702개의 logic elements로 구현 가능함을 확인하였다. 또한, FPGA test system을 구성하여 63MHz의 동작 주파수로 실시간 검증을 수행하였다.

대표 보이드를 이용한 대규모 무리의 효율적인 무리짓기 (An Efficient Flocking Behaviors for Large Flocks by Using Representative Boid)

  • 이재문
    • 한국게임학회 논문지
    • /
    • 제8권3호
    • /
    • pp.87-95
    • /
    • 2008
  • 본 논문에서는 임의적으로 움직이고 미리 정해진 위치가 없는 보이드들의 효율적인 무리짓기 대한 알고리즘을 제안한다. 하나의 보이드에 대하여 근사적으로 kNN을 찾고 행위특성의 값을 계산함으로써 제안하는 알고리즘은 기존의 공간 분할 알고리즘을 개선한다. 이를 위하여, 본 논문은 보이드들의 한 그룹에 대하여 평균 방향과 위치를 갖는 대표 보이드를 정의하여 사용한다. 제안하는 알고리즘은 구현되었으며 기존의 알고리즘과 실험적으로 비교되었다. 실험적 비교 결과로부터 제안하는 알고리즘이 기존의 알고리즘에 비하여 초당 렌더링 프레임 수 관점에서 약 $-5{\sim}130%$까지의 개선 효과가 있음을 알 수 있었다.

  • PDF

오차를 기반으로한 RBF 신경회로망 적응 백스테핑 제어기 설계 (The Adaptive Backstepping Controller of RBF Neural Network Which is Designed on the Basis of the Error)

  • 김현우;윤육현;정진한;박장현
    • 한국정밀공학회지
    • /
    • 제34권2호
    • /
    • pp.125-131
    • /
    • 2017
  • 2-Axis Pan and Tilt Motion Platform, a complex multivariate non-linear system, may incur any disturbance, thus requiring system controller with robustness against various disturbances. In this study, we designed an adaptive backstepping compensated controller by estimating the disturbance and error using the Radial Basis Function Neural Network (RBF NN). In this process, Uniformly Ultimately Bounded (UUB) was demonstrated via Lyapunov and stability was confirmed. By generating progressive disturbance to the irregular frequency and amplitude changes, it was verified for various environmental disturbances. In addition, by setting the RBF NN input vector to the minimum, the estimated disturbance compensation process was analyzed. Only two input vectors facilitated compensatory function of RBF NN via estimating the modeling and control error values as well as irregular disturbance; the application of the process resulted in improved backstepping controller performance that was confirmed through simulation.

신경회로망을 이용한 전기자동차용 바테리 잔존용량계 (State of Charge Indicator for Electric Vehicle using Neural Networks)

  • 변성천;김의선;류영재;임영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.560-562
    • /
    • 1998
  • A new approach to developing battery SOC indicator for electric vehicle is discussed in this paper. One of the most difficult problems associated with the development of electric vehicle is the battery indicator which reliably informs the state of charge(SOC) of the battery to the driver. And the condition to be satisfied with SOC indicator installed on the electric vehicle is that it should be used under frequently variable load. A new method to determining SOC using neural networks(NN) is proposed to satify the condition. The training data of NN are obtained by using mathematical model of lead-acid battery, and calculating discharge currents and terminal voltages while battery discharges with constant current. The 3-layered NN with back propagation algorithm is used Simulation results show that the proposed method is appropriate as SOC indicator of the battery.

  • PDF

근전도 신호기반 손목 움직임의 추정을 위한 다중 특징점 추출 기법 알고리즘 (Improvements of Multi-features Extraction for EMG for Estimating Wrist Movements)

  • 김서준;정의철;이상민;송영록
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.757-762
    • /
    • 2012
  • In this paper, the multi feature extraction algorithm for estimation of wrist movements based on Electromyogram(EMG) is proposed. For the extraction of precise features from the EMG signals, the difference absolute mean value(DAMV), the mean absolute value(MAV), the root mean square(RMS) and the difference absolute standard deviation value(DASDV) to consider amplitude characteristic of EMG signals are used. We figure out a more accurate feature-set by combination of two features out of these, because of multi feature extraction algorithm is more precise than single feature method. Also, for the motion classification based on EMG, the linear discriminant analysis(LDA), the quadratic discriminant analysis(QDA) and k-nearest neighbor(k-NN) are used. We implemented a test targeting twenty adult male to identify the accuracy of EMG pattern classification of wrist movements such as up, down, right, left and rest. As a result of our study, the LDA, QDA and k-NN classification method using feature-set with MAV and DASDV showed respectively 87.59%, 89.06%, 91.75% accuracy.