메모리 기반 추론에서 기억공간의 효율적인 사용과 분류성능의 향상을 위하여 제안되었던 RPA(Recursive Partition Averaging)알고리즘은 대상 패턴 공간을 분할 한 후 대표 패턴을 추출하여 분류 기준 패턴으로 사용한다. 이 기법은 메모리 사용 효율과 분류 성능 면에서 우수한 결과를 보였지만, 분할 종료 조건과 대표패턴의 추출 방법이 분류 성능 저하의 원인이 되는 단점을 가지고 있었다. 여기에서는 기존 RPA의 단점을 보안한 ARPA(Adaptive RPA) 알고리즘을 제안한다. 제안된 알고리즘은 패턴 공간의 분할 종료 조건으로 특징별 최빈 패턴 구간(FPD: Feature-based population densimeter)추출 알고리즘을 사용하며, 학습 결과 패턴의 생성을 대표패턴 추출기법 대신 최빈 패턴 구간을 이용하여 생성한 최적초월평면(OH: Optimized Hyperrectangle)을 사용한다. 제안된 알고리즘은 k-NN 분류기에서 필요로 하는 메모리 공간의 40%정도를 사용하며, 분류에 있어서도 RPA보다 우수한 인식 성능을 보이고 있다. 또한 저장된 패턴의 감소로 인하여, 실제 분류에 소요되는 시간 비교에 있어서도 k-NN보다 월등히 우수한 성능을 보이고 있다.
교통속도는 교통 문제를 해결하기 위한 중요한 지표 중 하나이다. 이를 이용하여 교통혼잡 탐지, 주행 시간 예측, 도로 설계와 같은 다양한 문제 해결에 활용할 수 있다. 따라서 정확한 교통속도 예측은 지능형 교통 시스템의 개발에 있어 필수적인 요소라고 할 수 있다. 본 논문에서는 대한민국 부산시의 특정 도로를 대상으로 교통 속도에 대한 분석 및 예측을 수행하였다. 과거 연구에서는 대상 도로의 속도 예측을 위해 과거 대상 도로의 교통속도 이력 데이터만을 사용하였다. 그러나 실제 대상 도로의 교통 상황은 인접한 도로의 교통 상황의 영향을 받게 된다. 따라서 본 논문에서는 실제 부산시의 과거 교통속도 이력 데이터를 기반으로 대상 도로와 인접 도로를 모두 고려하여 교통속도 예측 모델의 학습을 위한 속성을 추출하였다. 이와 같이 후보 속성들을 추출 한 후 선형 회귀 (linear regression), 모델 트리 (model tree) 및 k-nearest neighbor (k-NN) 기법을 이용하여 속성의 부분집합 선택 (feature subset selection)과 교통속도 예측 모델 생성을 수행하였다. 실험 결과 주어진 교통 데이터에서 k-NN 기법은 선형 회귀 및 모델 트리 기법에 비해 평균절대백분율오차 (mean absolute percent error, MAPE)와 제곱근평균제곱오차 (root mean squared error, RMSE) 측면에서 더 나은 성능을 보임을 확인하였다.
본 논문에서는 스마트폰 사용자를 위한 가속도 센서 기반의 제스처 인식 방법을 제안한다. 제안하는 제스처 인식 방법에서는 DTW 알고리즘을 적용하여 새로운 시계열 가속도 데이터와 각 제스처별 대표 훈련 데이터간의 유사도를 측정한 뒤, k-NN 알고리즘을 적용하여 제스처를 판별한다. 본 논문에서 제안하는 제스처 인식 방법의 성능을 분석해보기 위해, 안드로이드 스마트폰에서 동작하는 제스처 인식 프로그램과 이것을 활용한 제스처 기반 원격 제어 로봇 시스템을 구현하였다. 사용자-혼합 및 사용자-독립 실험들을 통해, 본 논문에서 제안한 제스처 인식방법과 구현 시스템이 높은 인식 성능과 확장성을 가진다는 것을 보였다.
Dong, Bing;Lee, Siew Eang;Sapar, Majid Hajid;Sun, Han Song
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2004년도 ICCAS
/
pp.1330-1333
/
2004
The methodology for modeling building energy consumption is well established for energy saving calculation in the temperate zone both for performance-based energy retrofitting contracts and measurement and verification (M&V) projects. Mostly, statistical regression models based on utility bills and outdoor dry-bulb temperature have been applied to baseline monthly and annual whole building energy use. This paper presents the application of neural networks (NN) to model landlord energy consumption of commercial buildings in Singapore. Firstly, a brief background information on NN and its application on the building energy research is provided. Secondly, five commercial buildings with various characteristics were selected for case studies. Monthly mean outdoor dry-bulb temperature ($T_0$), Relative Humidity (RH) and Global Solar Radiation (GSR) are used as network inputs and the landlord monthly energy consumption of the same period is the output. Up to three years monthly data are taken as training data. A forecast has been made for another year for all the five buildings. The performance of the NN analysis was evaluated using coefficient of variance (CV). The results show that NNs is powerful at predicting annual landlord energy consumption with high accuracy.
Legged robots can avoid an obstacle by crawling-over or striding, according to the obstacle’s nature and the current state of the robot. Thus, it can be observed that the mobility efficiency to reach a destination is improved by such action. Moreover, if robots have many legs like 4-legged or 6-legged types, then the robot movement range is affected by the order of swing leg. In this paper, the avoidance action of a quadruped robot is generated by a neural network (NN) whose inputs are information on the position of the destination, the obstacle configuration and the robot's self-state. To realize a free gait in static walking, the order of swing leg is determined using an another NN whose inputs are the amount of movements and the robot’s self-state. The design parameter of the latter NN is adjusted by using genetic algorithm (GA).
본 논문에서는 restricted coulomb energy(RCE) 신경망 기반 가스 분류기를 제안하고, 이의 실시간 학습 및 분류를 위한 하드웨어 구현 결과를 제시한다. RCE 신경망은 네트워크 구조가 학습에 따라 유동적이며, 실시간 학습 및 분류가 가능하므로, 가스 분류 응용에 적합한 특징을 갖는다. 설계된 가스 분류기는 UCI gas dataset에 대해 99.2%의 분류 정확도를 보였으며, Intel-Altera cyclone IV FPGA 기반 구현 결과, 26,702개의 logic elements로 구현 가능함을 확인하였다. 또한, FPGA test system을 구성하여 63MHz의 동작 주파수로 실시간 검증을 수행하였다.
본 논문에서는 임의적으로 움직이고 미리 정해진 위치가 없는 보이드들의 효율적인 무리짓기 대한 알고리즘을 제안한다. 하나의 보이드에 대하여 근사적으로 kNN을 찾고 행위특성의 값을 계산함으로써 제안하는 알고리즘은 기존의 공간 분할 알고리즘을 개선한다. 이를 위하여, 본 논문은 보이드들의 한 그룹에 대하여 평균 방향과 위치를 갖는 대표 보이드를 정의하여 사용한다. 제안하는 알고리즘은 구현되었으며 기존의 알고리즘과 실험적으로 비교되었다. 실험적 비교 결과로부터 제안하는 알고리즘이 기존의 알고리즘에 비하여 초당 렌더링 프레임 수 관점에서 약 $-5{\sim}130%$까지의 개선 효과가 있음을 알 수 있었다.
2-Axis Pan and Tilt Motion Platform, a complex multivariate non-linear system, may incur any disturbance, thus requiring system controller with robustness against various disturbances. In this study, we designed an adaptive backstepping compensated controller by estimating the disturbance and error using the Radial Basis Function Neural Network (RBF NN). In this process, Uniformly Ultimately Bounded (UUB) was demonstrated via Lyapunov and stability was confirmed. By generating progressive disturbance to the irregular frequency and amplitude changes, it was verified for various environmental disturbances. In addition, by setting the RBF NN input vector to the minimum, the estimated disturbance compensation process was analyzed. Only two input vectors facilitated compensatory function of RBF NN via estimating the modeling and control error values as well as irregular disturbance; the application of the process resulted in improved backstepping controller performance that was confirmed through simulation.
A new approach to developing battery SOC indicator for electric vehicle is discussed in this paper. One of the most difficult problems associated with the development of electric vehicle is the battery indicator which reliably informs the state of charge(SOC) of the battery to the driver. And the condition to be satisfied with SOC indicator installed on the electric vehicle is that it should be used under frequently variable load. A new method to determining SOC using neural networks(NN) is proposed to satify the condition. The training data of NN are obtained by using mathematical model of lead-acid battery, and calculating discharge currents and terminal voltages while battery discharges with constant current. The 3-layered NN with back propagation algorithm is used Simulation results show that the proposed method is appropriate as SOC indicator of the battery.
In this paper, the multi feature extraction algorithm for estimation of wrist movements based on Electromyogram(EMG) is proposed. For the extraction of precise features from the EMG signals, the difference absolute mean value(DAMV), the mean absolute value(MAV), the root mean square(RMS) and the difference absolute standard deviation value(DASDV) to consider amplitude characteristic of EMG signals are used. We figure out a more accurate feature-set by combination of two features out of these, because of multi feature extraction algorithm is more precise than single feature method. Also, for the motion classification based on EMG, the linear discriminant analysis(LDA), the quadratic discriminant analysis(QDA) and k-nearest neighbor(k-NN) are used. We implemented a test targeting twenty adult male to identify the accuracy of EMG pattern classification of wrist movements such as up, down, right, left and rest. As a result of our study, the LDA, QDA and k-NN classification method using feature-set with MAV and DASDV showed respectively 87.59%, 89.06%, 91.75% accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.