
1. INTRODUCTION

Since the energy crisis broke out in 1974, people became
aware of the critical role of energy use in the national
economy. Previous building energy research carried out by
Building and Construction Authority in Singapore showed that
the energy consumption of the existing building accounted for
approximately 57% of the whole electricity consumption in
Singapore. In addition, such high energy consumption is 
because of inefficiency use of building systems. One of the
cheapest and useful ways to reduce such high consumption is 
energy retrofitting by applying energy conservation measures
(ECMs). An important element in any energy retrofitting
program is to verify savings as accurate as possible. However,
after retrofitting all previous conditions are changed. As such,
it is therefore important to establish a baseline model to verify
pre-retrofit energy consumption and subsequently, the adjusted
energy use in the post retrofit period. The baseline model can 
tell how much energy the building would have used if the
retrofit had not been made [1]. Furthermore, the differences
between baseline energy use and adjusted post-retrofit energy
use are the real energy savings from ECMs. There are several
world-wide methodologies to establish such kind of baseline 
model to model building energy use including regression
analysis methods, calibrated simulation and artificial neural
networks. According to the result of ASHRAE competition on
the Energy Predictor Shootout II, it is approved that NN-based
model ranked top one in predicting building energy use for a
specific pre-retrofit period.

In additional, through literature review, artificial neural
networks are finding increasing application in many different
fields for forecast of building energy use for both short and
long term periods. They provide an attractive way for
determining the dependence of energy consumption on a
variety of schedule and occupancy dependent factors as well 
as weather variables [2]. It is appropriate to view neural
networks as a set of powerful non-linear regression tools. The
early application of neural networks for the prediction of
building energy consumption utilized feed-forward networks, 

which require the use of immediate past consumption as an 
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input [3]. In terms of savings measurement and baseline model 
establishment, recurrent neural networks are more appropriate.
Such a prediction is useful in the case of building that has
already been retrofitted with energy conservation features, to
estimate the building energy consumed if it had not undergone
retrofit. While their predictions show about twice the error
of feed-forward nets [4], they have been found to often be
more accurate than the classical prediction methods [5].
Kreider et al. (1995) [4] concluded that recurrent nets offered
an accurate method for predicting hourly energy use well into
the future for thermal end uses when only weather data were
known.

This paper mainly focuses on applying neural networks to
establish the baseline model in the pre-retrofit period and also
to predict landlord energy consumptions. The landlord energy
consumption refers to the energy utilized inside part of the
building, typically comprising: a) Air-conditioner central plant 
system which supply air-conditioning inside the building; b)
Vertical transportation service i.e. escalator and lift; c)
Ventilation system such as exhaust fan and ventilator; d)
Artificial lighting system in the common area i.e. corridor or
public common service area i.e. toilet and lift. These energy
consumption show a non-linear relationship with weather data,
occupancy density and operation hours. The objective of this
study is to evaluate the feasibility and accuracy of neural
networks methodology applied in building energy research in
the tropical region. This study is only a primary exploration
study of methodologies for future research. The projected
baseline model is important for energy service companies to
secure energy savings and also for energy performance
contracting.

2. BACKGROUND ON NEURAL NETWORKS

2.1 Neural Networks

A neural network can be any model in which the output
variables are computed from the input variables by
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compositions of basic functions or connections. However, one
of the most commonly used neural network models is the 
multilayer perceptron. This neural network consists of several
layers of neurons that are connected each other. A “neuron” is
a simplified mathematical model of a biological neuron. A 
connection is an information transport sending from one 
neuron to another. Fig 1 shows the structure of a neural
network. The first and last layers of neurons are called input
and output layers, respectively. Between these two layers are
the hidden layers.

Fig 1. Structure of a neural network [6]

2.2 Back-Propagation

The neural network toolbox applied in this study can
provide simple command for creating, training, and simulating
a fully-connection, feed-forward network. Fully-connected
means that each node is connected to all the nodes in the
adjacent layers. Fee-forward indicates that information is
passed in a single direction from the input to the output nodes. 
The learning algorithm employed here is the back-propagation,
generalized delta method. In this algorithm, the value of the
output of the NN is compared to a target value to determine an
error. The weights associated with the connection between
nodes are then adjusted in a backward direction from the
output layer to the input layer in order to minimize this error.
The detailed functions of training algorithm can be outlined as
follows [7]:

1) Forward Activation flow
During the first stage, the network is presented with a set of
inputs and the desired output. The Summed input, I, is
determined by multiplying each input signal by the weight of 
its interconnection:

)*( ii xwfI                             (1)

Where, w and x are the weights and input signals respectively;
and f(x) is the activation function of the processing element 
(PE)

For a Back-propagation network, this function should be
sigmoidal

))exp(1/(1)( xxf                       (2)

The output value of this function has a value of 1.0 when the 
input is a large negative number and a value of 0.0 for large
and positive input.

2)  Backward Error Flow
In the second stage, the actual output of the network is 
compared with the desired output. The difference between
them, or the error, is used to adjust the weights to complete
this iteration of the network. To compute the weight changes,
the Generalised Delata rule is applied:

tt WXEXW
2

1 /                  (3)

Where, 1tW is the current change in the weight vector

        E is the vector value
        X is the input pattern vector

X is the length or magnitude of the input pattern

vector;

is the learning constant;

is the momentum term; and 

tW is the previous change in the weight vector.

During this stage, the errors are also back-propagated for each

output-layer PE to the hidden layer using the same 

interconnections and weights as the hidden layer used to

transmit outputs to the output layer. The complete cycle of

forward activation propagation and backward error

propagation constitutes one iteration of the nerwork. The

network is usually trained with many input patterns. Generally

speaking, this iterative procedure will stop once the error

distance has converged to zero or a minimum specified value. 

Some variations of back-propagation learning procedure

have been successfully used. In particular,

Levenberg-Marquardt algorithm was designed to approach

second-order training speed without having to compute the

Hessian matrix. This algorithm appears to be the fastest

method for training moderate-sized feedforward neural 

networks. It is applied in this study.

3. METHODOLOGY

The methodology in this paper is as follows. Firstly, five
commercial builings were selected randomly from the central
business area. Upon to four years’ building energy
consumption data as utility bills were collected from
Singapore Power Services Company. The first three years’
data was used for training and establishing the baseline model. 
Another one year utility bill was used for prediction. At the
same time, the weather data was collected from National
Environment Agency of Singapore. The weather data period is 
the same as energy consumption data period. All the weather
data are monthly mean values. Secondly, when all the data are
ready, the NN was applied to set up the baseline model. This
NN was implemented using a standard mathematical package
that had a built networks toolbox as discussed in section 2.
The weather data included the outdoor dry-bulb temperature,
relative humidity and global solar radiation. The network had
one hidden layers of different neurons. Hence, the total input
parameters are three. The output is the whole building
landlord energy consumption. The network was trained for
each building using the monthly baseline data for the selected
building. The total training period is three years. Thirdly, after
training, the baseline model was used to predict the energy
consumption during the projected period. In this study, the
projected year was selected forward to year 2001. It is the
same when someone wants to predict backward. The same
input information was collected from year 2001. Finally, the
predicted annual whole building landlord energy consumption
was compared with measured one.
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In addition, we need to remove the effects of year-to-year
changes in conditioned areas and population, although in this
study they are both insignificant. Fels and Keating (1993) [8]
assumed a proportional relationship between annual daily 
energy use and changes in conditioned area. Hence, normalize 
area-changed energy use is merely the annual mean monthly
energy use divided by the conditioned area for that particular
year. However, until now there is no clear methodology for
normalize population-changed energy use. Here, we assumed
that normalizing energy use by conditioned area would also
implicitly normalize energy use for population changes. Here, 
for the landlord energy consumption, we should normalize 
energy use by landlord area because any changes in the
landlord area will affect the whole landlord energy
consumption.

Finally, the criterion used to select the most appropriate
model is to maximize the goodness-of-fit using the simplest 
model or combination of models [9]. (Draper and Smith, 
1981). Previous research shows that CV-RMSE is a major
measure to evaluate the goodness of fit of the model. It is
defined below:

CV-RMSE= 100
Y

RMSE
                      (4)

Where

RMSE=
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          (5)

Ŷ is the value of Y predicted by the model, n is the number of
observations; p is the number of model parameters.

Following Reddy et al. (1997a) [10], the equation for 
percentage between actual energy use and predicted energy
use is below: 

100(%)
projectedbaseline

projectedbaselinemeasured

y

yy
y

     (6)

Here, measuredy is the annual mean monthly energy use

found by simply averaging 12 monthly utility bills for the

projected year. projectedbaseliney  is the annual energy use

predicted by the baseline model for the projected year. This
percentage change is normally taken as prediction accuracy.

4. APPLICATION TO FIVE COMMERCIAL

BUILDINGS

4.1 data collection

Five buildings were selected randomly among all the
buildings around the Central Business District. They are all
office buildings for commercial use. The utility bills of these
five buildings were collected through surveys which were
carried by the previous research on building efficiency [11]. In 
order to retain the individual building anonymity, these five
buildings are referred to as building A,B,C,D and E. The
surveys processed in two periods. One is from October 1996
to October 1998,another is from 2000 to 2001. Hence, the

period of all utility bills is four years. Table 1 shows the
building size and the annual energy use of these six buildings. 
For building A, B, C and E, Oct.1996 to Oct.1998 and year
2000 are their baseline year. They are also periods of training
data. Building D takes Oct.1996 to Oct.1998 as its baseline 
year period.

The correspondent weather data is taken from National 
Environment Agency, Singapore. There are four weather
stations in Singapore. They are Tengah, ChangGi, Seletar and
Senbawang. The station in Seletar is selected which is nearest
to five buildings among four stations because the onsite
weather data are not available. Actually, there is little
difference among these four weather points in terms of 
monthly mean temperature. The monthly data is found by
averaging the hourly data of the whole month. 

Table 1: Size and Energy Use in Five Buildings

Building
Total

BLDG.
Area(m2)

Landlord
Area(m2)

Total
Landlord
Energy

Consumption
( MWh/yr)

A 36,629 14,938 5,291

B 46,400 22,627 6,024

C 60,895 16910 7,681

D 123,933 63,591 12,865

E 108,000 41,364 1,283

4.2 Using Neural Networks to Model Monthly Energy

Consumption

After all the data collection, the NN toolbox was used to
train the baseline data and then to predict the monthly energy
consumption of the projected year. This NN only has one
hidden layer with different neurons in different cases. Table 2
shows the results of NN training and Prediction.

Table 2 shows that for every case study, the optimum point 
is different in terms of neuron numbers in the hidden layer.
For example, building A has the optimum point when neuron
number is 12, while the prediction value will both increase
when n=10 or 14. For building B, the optimum point lies at 
n=14, while building C is at n=23, D and E are both at n=10.
The prediction results of other neuron number points are larger
than the optimum point which indicates the characteristics of 
neural network.

Table 2 also shows the results of training CV and prediction
CV. Training CV are all better than prediction CV, except for
building B. Three out of five building have training CV lower
than 10%, which means the neural network models of these
three are excellent models. However, only one prediction CV
is less than 10%. It shows that in terms of monthly energy
consumption, the NN model did not work very well. However,
the prediction accuracies, which show the annual energy
consumption prediction error, are all below 10%. The NN 
model has a good performance in forecasting the annual
energy consumption. 
Table 2. Results of NN Training and Prediction 
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(Continued)

Building
Name

Training
CV (%) 

Prediction
CV (%) 

Prediction
Accuracy (%)

A 9.33 15.5 1.9

B 12.19 9.69 8.5

C 20.46 26.42 3.68

D 6.5 26.06 6.01

E 9.4 23.41 3.38

5. DISCUSSION AND CONCLUSION

Overall, the NN can well predict the annual energy
consumption but not the monthly one. The reason could be
below:

1) Small number of training data. Due to the limitation of
data source, only four year monthly energy consumption
data have been collected. Generally, the neural network
needs a large pool of data for training. This is also the
reason for high training CV.

2) Limited input variables. Although previous research
showed that climate variables are the main contribution
to the changes of building energy consumption, there
should be some human factors that was not considered as 
inputs in this study.

In conclusion, this study used an NN for prediction monthly
and annual landlord energy consumption in Singapore. The
results suggest that NN is necessary and important when
modeling the energy use of commercial buildings due to some 
non-linear performances in them. The research presented in
this paper is just an exploration study. It is believed that with a
large data pool, NN could work better. The future research will 
focus on the short term energy consumption forecast.
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