• Title/Summary/Keyword: K-Motion

Search Result 12,069, Processing Time 0.036 seconds

Robust Motion Compensated Frame Interpolation Using Weight-Overlapped Block Motion Compensation with Variable Block Sizes to Reduce LCD Motion Blurs

  • Lee, Jichan;Choi, Jin Hyuk;Lee, Daeho
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.537-543
    • /
    • 2015
  • Liquid crystal displays (LCDs) have slow responses, so motion blurs are often perceived in fast moving scenes. To reduce this motion blur, we propose a novel method of robust motion compensated frame interpolation (MCFI) based on bidirectional motion estimation (BME) and weight-overlapped block motion compensation (WOBMC) with variable block sizes. In most MCFI methods, a static block size is used, so some block artefacts and motion blurs are observed. However, the proposed method adjusts motion block sizes and search ranges by comparing matching scores, so the precise motion vectors can be estimated in accordance with motions. In the MCFI, overlapping ranges for WOBMC are also determined by adjusted block sizes, so the accurate MCFI can be performed. In the experimental results, the proposed method strongly reduced motion blurs arisen from large motions, and yielded interpolated images with high visual performance and peak signal-to-noise ratio (PSNR).

Recognition of Fighting Motion using a 3D-Chain Code and HMM (3차원 체인코드와 은닉마르코프 모델을 이용한 권투모션 인식)

  • Han, Chang-Ho;Oh, Choon-Suk;Choi, Byung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.756-760
    • /
    • 2010
  • In this paper, a new method to recognize various motions of fighting with an aid of HMM is proposed. There are four kinds of fighting motion such as hook, jab, uppercut, and straight as the fighting motion. The motion graph is generalized to define each motion in motion data and the new 3D-chain code is used to convert motion data to motion graphs. The recognition experiment has been performed with HMM algorithm on motion graphs. The motion data is captured by a motion capture system developed in this study and by five actors. Experimental results are given with relatively high recognition rate of at least 85%.

ESTIMATING THE MOTION OF THE HUMAN JOINTS USING OPTICAL MOTION CAPTURE SYSTEM

  • Park, Jun-Young;Kyota, Fumihito;Saito, Suguru;Nakajima, Masayuki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.764-767
    • /
    • 2009
  • Motion capture systems allow to measure the precise position of markers on the human body in real time. These captured motion data, the marker position data, have to be fitted by a human skeleton model to represent the motion of the human. Typical human skeleton models approximate the joints using a ball joint model. However, because this model cannot represent the human skeleton precisely, errors between the motion data and the movements of the simplified human skeleton model happen. We propose in this paper a method for measuring a translation component of wrist, and elbow joints on upper limb using optical motion capture system. Then we study the errors between the ball joint model and acquired motion data. In addition, we discuss the problem to estimate motion of human joint using optical motion capture system.

  • PDF

Identification of user's Motion Patterns using Motion Capture System

  • Jung, Kwang Tae;Lee, Jaein
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.453-463
    • /
    • 2014
  • Objective:The purpose of this study is to identify motion patterns for cellular phone and propose a method to identify motion patterns using a motion capture system. Background: In a smart device, the introduction of tangible interaction that can provide new experience to user plays an important role for improving user's emotional satisfaction. Firstly, user's motion patterns have to be identified to provide an interaction type using user's gesture or motion. Method: In this study, a method to identify motion patterns using a motion capture system and user's motion patterns for using cellular phone was studied. Twenty-two subjects participated in this study. User's motion patterns were identified through motion analysis. Results: Typical motion patterns for shaking, shaking left and right, shaking up and down, and turning for using cellular phone were identified. Velocity and acceleration for each typical motion pattern were identified, too. Conclusion: A motion capture system could be effectively used to identify user's motion patterns for using cellular phone. Application: Typical motion patterns can be used to develop a tangible user interface for handheld device such as smart phone and a method to identify motion patterns using motion analysis can be applied in motion patterns identification of smart device.

Motion Blur reduction based on Motion Compensation

  • Park, Jae-Hyeung;Kim, Yun-Jae;Park, Min-Kyu;Amino, Tadashi;Oh, Jae-Ho;Kim, Nam-Deog;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.413-416
    • /
    • 2007
  • Motion-estimation/motion-compensation (ME/MC) provides superior motion picture quality but its huge computation load results in high cost. Impulsive driving is a cost-effective solution but it suffers from large flicker and brightness loss. Motion compensated impulsive driving technology has been developed to achieve high motion picture quality in a cost-effective implementation by combining ME/MC and impulsive driving. The key idea is to apply ME/MC or impulsive driving selectively according to the motion vector distribution of the incoming image sequence. In this paper, the description of the algorithm and the experimental results are provided.

  • PDF

Improvement of Motion Accuracy Using Transfer Function in Linear Motion Bearing Guide (전달함수를 이용한 직선베어링 안내면의 운동정밀도 향상)

  • Kim, Kyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.77-85
    • /
    • 2002
  • An analysis method which calculates corrective machining information for improving the motion accuracy of linear motion guide Is proposed in this paper. The method is composed of two algorithms. One is the algorithm fur prediction of the motion errors from rail form error. The other is the algorithm for prediction of rail form error from the motion errors of table. Transfer function is utilized in each algorithm, which represents the ratio of bearing reaction force variation to unit magnitude of spatial frequencies of raid from error. As the corrective machining information is acquired from the measured motion errors of table, the method has a merit not to measure rail form error directly. Validity of the method is verified both theoretically and experimentally. By applying the method, linear motion error of test equipment is reduced from 5.97$\mu$m to 0.58$\mu$m, and reduced from 32.78arcsec to 6.21 arcsec in case of angular motion error. From the results, it is confirmed that the method is very effective to improve the motion accuracy of linear motion guide.

Analysis of the Motion Errors in Linear Motion Guide (직선베어링 안내면의 운동오차 해석)

  • Kim, Kyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.139-148
    • /
    • 2002
  • Motion errors of linear motion guideway are analyzed theoretically in this paper. For the analysis, an new algorithm predicting motion errors of bearing and guideway is proposed using the Hertz's elastic deformation theory. Accuracy averaging effect can be calculated quantitatively by analyzing relationship between motion errors of guideway and spatial frequency of rail form error. Influences of design parameters on the motion errors including the number of balls, preload, ball diameter, bearing length and the number of bearings are analyzed. As it is difficult to measure the rail form error, experimental results are compared with results analyzed by the equivalent analysis method which evaluate the motion errors of guideway using the measured errors of bearing. From the experimental results, it is confirmed that the proposed analysis method it effective lo analyze the motion errors of linear motion bearing and guideway.

Adaptive Zoom Motion Estimation Method (적응적 신축 움직임 추정 방법)

  • Jang, Won-Seok;Kwon, Oh-Jun;Kwon, Soon-Kak
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.915-922
    • /
    • 2014
  • We propose an adaptive zoom motion estimation method where a picture is divided into two areas based on the distance information with a depth camera : the one is object area and the other is background area. In the proposed method, the zoom motion is only applied to the object area except the background area. Further, the block size of motion estimation for the object area is set to smaller than that of background area. This adaptive zoom motion estimation method can be reduced at the complexity of motion estimation and can be improved at the motion estimation performance by reducing the block size of the object area in comparison with the conventional zoom motion estimation method. Based on the simulation results, the proposed method is compared with the conventional methods in terms of motion estimation accuracy and computational complexity.

An Adaptive Motion Estimation Technique Using Temporal Continuity of Motion

  • Park, Jung-Hyun;Lee, Kyeong-Hwan;Kim, Duk-Gyoo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.7-10
    • /
    • 2000
  • Fast block motion estimation technique is proposed to reduce the computational complexity in video coding. In the conventional methods the size of search region is fixed. For small motion regions like background the small size of sea of search region is enough to find a block motion. But for active motion regions the large size of search region is preferred to figure out the accurate motion vector. Therefore, it is reasonable that a block motion is estimated in the variable search region (both the size and the position of it). That is to say, the search region varies according to the predicted motion characteristics of a block. The block motion in video frames has temporal continuity and then the search region of a current block is predicted using the block motion of previous blocks. The computational complexity of the proposed technique is significantly reduced with a good picture quality compared to the conventional methods.

  • PDF

Generating 3-D Models of Human Motions by Motion Capture

  • Yamaguchi, I.;Tou, K.;Tan, J.K.;Ishikawa, S.;Naito, T.;Yokota, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1629-1632
    • /
    • 2003
  • A technique is presented for generating a compound human motion from its primitive motions obtained by a motion capture system. Some human fundamental motions are modeled in a 3-D way and registered as primitive motions. Because the factorization method is used for the motion capture, calibration of video cameras and connection of the motion in the direction of time is both unnecessary. Employing these motions, various compound human motions are generated by connecting the motions after having applied rotation and parallel transformation to them. Linear interpolation is done at the discontinuous boundary between primitive motions and smooth connection is achieved. Experimental results show satisfactory performance of the proposed technique. The technique may contribute to producing various complicated human motions without much effort using a strict motion capture system.

  • PDF