• Title/Summary/Keyword: K-BLAST

Search Result 1,693, Processing Time 0.025 seconds

Optimal Mixture Proportion for High Performance Concrete Incorporating Ground Granulated Blast furnace Slag

  • Choi Jae-Jin;Kim Eun-Kyum;Yoo Jung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.473-480
    • /
    • 2005
  • In this study, a mix design for self compacting concrete was based on Okamura's method and concrete incorporated just a ground granulated blast furnace slag. Replacement ratio of slag is in the range of $20-80\%$ of cement matrix by volume. For the optimal self compactability in mixture incorporating ground granulated blast furnace slag, the paste and mortar tests were first completed. Then the slump flow, elapsed time of 500mm slump flow, V funnel time and filling height by U type box were conducted in concrete. The volume of coarse aggregate in self compacting concrete was in the range of $50-60\%$ to the solid volume percentage of coarse aggregate. Finally, the compressive and splitting tensile strengths were determined in the hardened self compacting concrete incorporating ground granulated blast furnace slag. From the test results, it is desirable for self compacting concrete that the replacement of ground granulated blast furnace slag is in the range of $40-60\%$ of cement matrix by volume and the volume of coarse aggregate to the solid volume percentage of coarse aggregate with a limit of $55\%$.

High Strengthening Mechanism by Blast Furnace Slag in Concrete Based Products (고로슬래그 미분말을 사용한 콘크리트 2차 제품의 고강도화 메커니즘)

  • Kim, Jin-Man;Cho, Sung-Hyun;Lee, Dae-Kyung
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.109-117
    • /
    • 2001
  • Whereas commonly used to make concrete having rich water contents as binder or mineral admixture, blast furnace slag has been rarely applied to manufacture in concrete based products having poor water contents. This study, for the multi-recycling of blast furnace slag, is to analyze strength enhancement mechanism of concrete based products using blast furnace slag. The results of this study are following. We found that blast furnace slag is very effective mineral admixture to manufacture high strength spacer having over $400kgf/cm^2$ in compressive strength. Also, enhancement of strength by blast-furnace slag are responsible to densified grading and pozzolanic reaction.

  • PDF

A performance based strategy for design of steel moment frames under blast loading

  • Ashkezari, Ghasem Dehghani
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.155-164
    • /
    • 2018
  • Design of structures subjected to blast loads are usually carried out through nonlinear inelastic dynamic analysis followed by imposing acceptance criteria specified in design codes. In addition to comprehensive aspects of inelastic dynamic analyses, particularly in analysis and design of structures subjected to transient loads, they inherently suffer from convergence and computational cost problems. In this research, a strategy is proposed for design of steel moment resisting frames under far range blast loads. This strategy is inspired from performance based seismic design concepts, which is here developed to blast design. For this purpose, an algorithm is presented to calculate the capacity modification factors of frame members in order to simplify design of these structures subjected to blast loading. The present method provides a simplified design procedure in which the linear dynamic analysis is preformed, instead of the time-consuming nonlinear dynamic analysis. Nonlinear and linear analyses are accomplished in order to establish this design procedure, and consequently the final design procedure is proposed as a strategy requiring only linear structural analysis, while acceptance criteria of nonlinear analysis is implicitly satisfied.

Epidemiological Studies of Blast Disease of Rice Plant II. Significance of Differential Distribution of Leaf Lesions at Different Location of Each Tiller as an Inoculum Source of Panicle Blast (수도 도열병의 역학적 연구 II. 이삭 도열병 전염원으로서의 엽위별 병반분포의 의의)

  • Park J.S.;Yu S.H.;Kim H.G.
    • Korean journal of applied entomology
    • /
    • v.22 no.4 s.57
    • /
    • pp.277-282
    • /
    • 1983
  • Number and percentage of diseased area of leaf blast lesions formed on different leaf location were mostly distributed from the flag leaf(n-1) to the 3rd leaf from the top(n-3) in Tongil line rice varieties and on the 2nd leaf from the top(n-2) in Japonica type rice varieties. Especially leaf lesions of Nopung which was more susceptible to leaf blast among Ton1 line rice varieties were mostly distributed on flag leaf. Relation between the degree of lesion distribution and level of fertilizer was more clear with an increase of fertilizer quantity. Leaf blast lesions of rice varieties were generally distributed from the flag leaf to the with leaf from the top but mainly those at flag leaf and the 2nd leaf from the top were found to be most responsible for inoculum source of panicle blast after booting stage. Increase of the conidia formation was resulted from fluctuation of temperature$(24^{\circ}C\~16^{\circ}C)$ in low temperature range after booting stage and many inoculum sources were supplied on panicles until the end of September without impeding dispersal from leaf blast lesions as an inoculum source of panicle blast.

  • PDF

Preliminary Structural Design of Blast Hardened Bulkhead (The 1st Report : Formulation of Simplified Structural Analysis/Design Method) (폭발강화격벽의 초기구조설계에 관한 연구 (제1보 : 간이 구조 해석/설계 기법 정식화))

  • Nho, In Sik;Park, Man-Jae;Cho, Yun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.371-378
    • /
    • 2018
  • Internal detonation of a warhead inside a compartment of naval vessel can result in serious blast damages including plastic deformation and rupture of the structural members especially bulkhead due to the huge explosive impact pressure, fragments and high temperature flame. To secure watertight integrity and to prevent the domino-type flooding of neighbouring compartments caused by the rupture of bulkheads, it is necessary to develop the structural design technology of Blast Hardened Bulkheads(BHB) which can resist the blast impact pressure of threatening weapons to increase the survivability of naval vessels. This study dealt with the simplified structural response analysis of BHB under impact pressure of confined explosion and aimed to develop the efficient and rational design method of BHB and joint structures which can be applied at initial design stage. The present 1st report dealt with the phenomena of explosive detonation surveying the preceding experimental/theoretical research and the characteristics of time history of blast pressure including the peak value and duration time were examined. And to predict the large plastic deformation behaviors of BHB by the huge blast pressure reasonably, the plastic hinge method including the membrane effects was formulated. It was applied to the simplified structural design equations. The following report will deal with the application and adjustment process of the structural scantling equations to the actual BHB design and verification of validity of them.

Progressive Collapse Analysis of Reinforced Concrete Core Structure Subjected to Internal Blast Loading (내부 폭발하중을 받는 철근콘크리트 코어의 연쇄붕괴 해석)

  • Kim, Han-Soo;Ahn, Jae-Gyun;Ahn, Hyo-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.715-722
    • /
    • 2014
  • In this paper, internal blast effect of reinforced concrete core structure were investigated using Ansys Autodyn, which is a specialized hydrocode for the analysis of explosion and impact. It is expected that internal blast case can give additional damage to the structure because it causes rebound of blast loads. Therefore, in this paper, the hazard of internal blast effect is demonstrated using UFC 3-340-02 criteria. In addition, analysis result of Autodyn, experimental result regarding rebound of blast load, and example of UFC 340-02 are compared to verify that Autodyn can analyze internal blast effect properly. Furthermore, progressive collapse mechanism of core structure which is one of the most important parts in high rise buildings is also analyzed using Autodyn. When internal blasts are loaded to core structure, the core structure is mostly damaged on its corner and front part of core wall from explosives. Therefore, if the damaged parts of core wall are demolished, progressive collapse of the core structure can be initiated.

Numerical Analysis of the Subscale Blast Door Deformation and the Subsequent Blast Wave Propagation through the Tunnel by the External Explosion (외부 폭발에 의한 축소형 방폭문 변형 및 터널 내부 폭풍파 전파 거동의 수치해석)

  • Yun, Kyung Jae;Yoo, Yo-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.462-468
    • /
    • 2016
  • In this paper, we present the results of the numerical analysis employing CONWEP, LS-DYNA FSI(Fluid Structure Interaction), AUTODYN FSI, LS-DYNA ALE(Arbitrary Lagrange Eulerian) and combination of CONWEP and LS-DYNA ALE for blast door fracture and wave propagation through the tunnel by the external explosion. We compared the numerical analysis results with the subscale test data and selected combination of CONWEP and LS-DYNA ALE method as adequate data generation method for the FRM(Fast Running Model) software development. It is expected to save much time and costs by using the numerical simulation data for the various test conditions.

FE assessment of dissipative devices for the blast mitigation of glazing façades supported by prestressed cables

  • Amadioa, Claudio;Bedon, Chiara
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.141-162
    • /
    • 2014
  • The paper focuses on the dynamic response of a blast-invested glass-steel curtain wall supported by single-way pretensioned cables. In order to mitigate the critical components of the façade from severe structural damage, an innovative system able to absorb and dissipate part of the blast-induced stresses in the critical façade components is proposed. To improve the blast reliability of the studied glazing system, specifically, rigid-plastic and elastoplastic devices are introduced at the base and at the top of the vertical bearing cables. Several combinations and mechanical calibrations of these devices are numerically investigated and the most structurally and economically advantageous solution is identified. In conclusion, a simple analytical formulation totally derived from energetic considerations is also suggested for a preliminary estimation of the maximum dynamic effects in single-way cable-supported façades subjected to high-level blast loads.

Impact of composite materials on buried structures performance against blast wave

  • Mazek, Sherif A.;Wahab, Mostafa M.A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.589-605
    • /
    • 2015
  • The use of the rigid polyurethane foam (RPF) to strengthen buried structures against blast terror has great interests from engineering experts in structural retrofitting. The aim of this study is to use the RPF to strengthen the buried structures under blast load. The buried structure is considered to study the RPF as structural retrofitting. The Guowei model (Guowei et al. 2010) is considered as a case study. The finite element analysis (FEA) is also used to model the buried structure under shock wave. The buried structure performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the Guowei model and the proposed numerical model. The RPF improves the buried structure performance under the blast wave propagation.

Throughput of V-BLAST System using Hybrid ARQ in Correlated Fading Channels (상관된 페이딩 채널에서 하이브리드 ARQ를 사용하는 V-BLAST 시스템의 수율)

  • Kim, Bong-Hoe;Hwang, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • In this paper, an antenna-switching scheme using negative acknowledgement for hybrid automatic repeat request (H-ARQ) is proposed and analyzed in the Vertical Bell Labs Layered Space-Time(V-BLAST) system, in which the transmit antenna is alternatively switched under retransmission. By analytically evaluating the channel capacity of the proposed scheme over correlated fading channels, it is shown that the adverse effect of the channel correlation is alleviated by the antenna switching scheme. Simulation results demonstrate that the average throughput may be improved in a correlated fading channel without adding much complexity to the process.