벼 등 식량작물 작황 추정의 경제, 산업적 중요성이 증가함에 따라 생물리 모형과 원격탐사 기반의 위성자료를 활용한 작황 추정 연구가 활발히 진행되고 있다. 이 연구에서는 위성 기반의 전천후 기상 입력자료(i.e. 기온, 대기 수증기압 포차, 일사량)와 빛 이용효율 모형을 이용한 생물리적 작물 성장 알고리즘을 벼에 적용하여 벼의 수확량을 수확 시기 보다 이르게(9월 중순 경) 추정하는 것을 목적으로 하였다. 2003년부터 2014년까지 12년간 경상권을 제외한 국내의 군 단위 행정구역별 벼 수확량을 추정하고, 이를 통계청에서 제공하는 현미 생산량 통계와 비교, 평가하였다. 벼 건중량, 수확지수 그리고 수확량 추정 결과는 각각 지도로 작성하여 공간적 분포 양상을 분석하였다. 연도별 전국 평균 추정 건중량은 평균오차(ME)가 0.56%, 평균절대오차(MAE)가 5.73%로 유의미한 결과를 보였다. 연도별 군 단위 건중량은 ME가 0.10%에서 2.00%, MAE가 2.10에서 11.62%의 범위를 보였다. 추정된 건중량은 강원지역에서 상대적으로 과대 모의하고, 충청 이남의 도심과 서해 인근지역에서 과소 모의하는 경향을 보였다. 건중량과 유관한 통계청 자료(i.e. 볏짚 생산량)와는 상반된 변동 양상을 보였는데, 이는 입력자료의 해상도(1 km)로 인한 픽셀 내 토지피복 이질성으로 인한 오차로 사료된다. 또한 생육기간 이후 수확시기의 생육상황을 고려하지 못하는 점을 향후 연구에서 개선할 필요가 있다.
국내에서 계측된 92개의 측압계수를 이용하여 심도에 따른 측압계수의 경향을 분석하고 Hoek & Brown이 정의한 측압계수의 범위와 비교하였다. 국내의 측압계수는 1이상이 84%로 대부분의 경우 수평응력이 연직응력보다 크게 나타났다. 지반의 침식. 퇴적 및 암반 풍화. 횡압력에 의한 측압계수의 변화를 분석하기 위해 탄소성 이론을 적용하고 그 결과를 유한요소해석과 비교하였다. 측압계수는 지표 침식과 횡압력이 크고 암질이 양호할수록 증가하였고 퇴적의 경우에 감소하였다. 본 연구를 통하여 여러 지질작용이 측압계수에 미치는 영향을 파악할 수 있었고, 특히 지하공동의 굴착 심도인 천부 암반에서의 측압계수 변화를 파악할 수 있었다. 다층 역전파 학습 알고리즘을 적용한 인공신경망을 이용하여 측압계수 예측 전문가 시스템을 개발하였다. 학습률, 모멘텀 상수 그리고 은닉층 노드수를 고려하여 실측치와 상관계수 0.996 이상의 매우 높은 추론율을 보이는 모델을 선정하였다 학습에서 제외한 9개 계측자료로 이 모델을 검증한 결과, 추론오차의 평균은 20%였으며 상관계수도 0.95 이상으로 측압계수를 예측하는데 있어 높은 신뢰성을 보였다.
본 연구는 최근 자동노출제어장치에 의한 X선질 보정 및 다양한 수학적 보정 알고리즘 적용이 가능한 전산화단층촬영 장치를 이용하여 견부 강제 견인용 밴드의 사용 유 무에 따라 영상의 질과 환자의 편의성 및 안정성 측면에서 견부 강제 견인법에 대한 임상적 유용성을 제시하고자 하였다. 이를 위하여 경부 통증을 호소하는 환자 79명을 대상으로 견부 강제 견인용 밴드를 사용하기 전 후의 측면 투영 scout 영상과 횡단면 영상을 획득하여 횡단면 영상의 일정 크기의 관심영역 내의 화소 및 평균 HU 값을 비교하여 정량적 분석을 하였고 인공물과 해상도 및 분해능에 대한 임상 영상평가를 정성적으로 분석하였으며 환자가 느끼는 불편 정도를 자가 진단 설문 평가하였다. 결과적으로 측면 투영 scout 영상에서 견부 강제 견인용 밴드를 사용한 경우 묘출되는 경추의 수가 증가되었으나 횡단면 영상의 관심영역 내에서 견부 강제 견인용 밴드를 사용하기 전 후에 대한 화소 및 평균 HU 값의 변화는 거의 없는 것으로 판단되었으며 인공물과 해상도 및 대조도와 관련된 정성적 분석 결과에서 관찰자간 특이한 결과는 보이지 않았다. 따라서 견부 강제 견인용 밴드의 사용에 대한 자가 진단 설문 평가에서 환자의 82.27%는 불편함을 호소하였으며 정량적 및 정성적으로 영상의 질을 분석한 결과에서 사용에 따른 영상의학적 이점은 없는 것으로 판단되었다. 최근 다양한 수학적 보정 알고리즘에 의한 전처리 필터 과정의 적용과 더불어 절편 두께의 감소 및 자동노출제어장치 등에 의한 선질 보정 등이 가능한 전산화단층촬영 장치가 보급되면서 선속 경화에 의한 영상의 잡음은 문제가 되지 않을 것으로 판단되어 영상의 질에 영향을 주지 않으면서 환자에게 불편함을 주거나 추가적 위험성이 있는 견부 강제 견인용 밴드의 사용은 더 이상 임상적 유용성이 없는 것으로 판단되었다.
정비 산업은 사후정비, 예방정비를 거쳐, 상태기반 정비를 중심으로 진행되고 있다. 상태기반 정비는 장비의 상태를 파악하여, 최적 시점에서의 정비를 수행한다. 최적의 정비 시점을 찾기 위해서는 장비의 상태, 즉 잔여 유효 수명을 정확하게 파악하는 것이 중요하다. 이에, 본 논문은 시뮬레이션 데이터(C-MAPSS)를 사용한 터보팬 엔진의 잔여 유효수명(RUL, Remaining Useful Life) 예측 모델을 제시한다. 모델링을 위해 C-MAPSS(Commercial Modular Aero-Propulsion System Simulation) 데이터를 전처리, 변환, 예측하는 과정을 거쳤다. RUL 임계값 설정, 이동평균필터 및 표준화를 통해 데이터 전처리를 수행하였고, 주성분 분석(Principal Component Analysis)과 k-NN(k-Nearest Neighbor)을 활용하여 잔여 유효 수명을 예측하였다. 최적의 성능을 도출하기 위해, 5겹 교차검증기법을 통해 최적의 주성분 개수 및 k-NN의 근접 데이터 개수를 결정하였다. 또한, 사전 예측의 유용성, 사후 예측의 부적합성을 고려한 스코어링 함수(Scoring Function)를 통해 예측 결과를 분석하였다. 마지막으로, 현재까지 제시되어온 뉴럴 네트워크 기반의 알고리즘과 예측 성능 비교 및 분석을 통해 k-NN 활용 모델의 유용성을 검증하였다.
본 연구는 미국 S&P 500 지수를 변동성 돌파 전략을 활용하여 Buy and Hold 방식과 비교 분석한 연구이다. 변동성 돌파 전략은 시장의 상대적 안정 또는 집중된 시기 후의 가격 움직임을 활용하는 거래 전략이다. 특히, 낮은 변동성 기간 후에 큰 가격 움직임이 더 자주 발생한다는 것이 관찰된다. 주식이 한동안 좁은 가격 범위에서 움직이다가 가격이 갑작스레 상승 또는 하락하는 경우, 그 주식이 해당 방향으로 계속 움직일 것으로 예상된다. 이러한 움직임을 활용하기 위해 거래자들은 변동성 돌파 전략을 채택한다. 'k' 값은 최근 시장 변동성의 측정값에 곱하는 배수로서 활용된다. 변동성의 측정 방법 중 하나로는 최근 거래일의 최고가와 최저가 차이를 나타내는 평균 진정 범위(ATR)가 있다. 'k' 값은 거래자들이 거래 임계값을 설정하는 데 중요한 역할을 한다. 본 연구는 'k' 값을 일반적인 값으로 연산하여 Buy and Hold 전략과 수익률을 비교 하여, 변동성 돌파전략을 사용한 알고리즘 트레이딩이 약간은 높은 수익률을 이룩하였다. 추후에는 인공 지능 딥러닝 기법을 이용하여 S&P 500 지수의 자동 거래를 위한 최적의 K 값을 구하고, 이를 통해 수익률을 극대화하기 위한 시뮬레이션 결과를 제시할 예정이다.
최근 ITU-T/VCEG과 ISO/IEC MPEG은 공동으로 차세대 비디오 압축 표준 기술인 High efficient video coding (HEVC)를 제정하고 있다. HEVC는 H.264/AVC 표준 기술과 비교해 보면 매우 향상된 압축 효율을 보여 주고 있으며, 특히 Full HD 이상의 매우 큰 사이즈의 동영상 및 그에 따른 고화질 비디오 서비스를 주요 목표로 하고 있다. 그러나 품질과 압축 효율 향상을 위해 새로운 구조와 압축 도구들이 추가됨으로써 인코더의 연산 복잡도가 매우 증가되어 있으며, 이에 화질의 열화를 최소한으로 유지하면서 계산량을 감소시키는 연구가 필요해 지고 있는 상황이다. 본 연구에서는 화면 간 예측 시에 부호화 단위의 분할을 효율적으로 조기 종료하는 방법을 제안한다. 제안된 방법은 현재 코딩 단위 (Coding unit)의 움직임 벡터 정보, 율-왜곡 비용, 그리고 상위 코딩 단위에서의 개별 사이즈에 대한 평균 율-왜곡 비용값을 활용하여 분할을 조기에 중단한다. 실험 결과를 통하여 제안된 방법이 기존의 ECU 방법보다 약 10% 정도로 속도 향상이 있으며, HM 참조 소프트웨어와 비교 시 BD-rate 증가는 1.975% 정도로 매우 적게 나타남을 보인다.
데이터 처리 속도는 예보 능력과 관련이 있다. 최신의 입력 자료를 이용한 예측 데이터의 고속 생산은 신속한 대처를 가능하게 한다. 또한 알고리즘 작성, 계산, 결과 평가, 알고리즘 개선으로 이어지는 순환 구조를 원활하게 할 뿐만 아니라 오류 발생시 빠른 시간 내에 복구할 수 있게 하는 등 매우 중요한 요소이다. 현재의 조기경보 시스템은 매 계산 주기 마다 섬진강 유역의 10개 시군에 대해 30미터 해상도의 격자형 자료를 400개 이상 생성하고 있으며(중간 데이터 포함) 최대 9일까지 예보되는 자료를 포함할 경우 600개 이상이다. 이는 전국을 30미터 해상도로 약 45개를 생성하는 계산양과 비슷하다. 또한 14,000여개의 필지에 대한 구역 통계와, 각 래스터의 평균, 최대, 최소 등의 통계자료 생성도 함께 수행 해야 한다. 이와 같은 대량의 데이터를 한정된 시간 내로 처리하기 위한 몇 가지 기법을 적용하여 적용하였으며, 아직 적용은 못하였으나 가능성의 여부를 평가해 보는 것으로 본 연구를 진행하였다. 그 결과 앞서 제시된 래스터 캐시, NFS 캐시, 분산 처리를 모두 적용할 경우 데이터 처리 시간을 1/8로 단축 시킬 수 있음이 확인되었다. 또한 GPU를 이용한 연산을 적용할 경우 일부 모듈에 대해 매우 큰 폭으로 수행 시간을 단축 시킬 수 있음을 확인하였다. 다만 캐시를 위한 추가적인 디스크, GPU라는 별도의 하드웨어, 추가된 하드웨어 지원을 위한 고출력 전원 장치와 이에 따른 UPS (Uninterruptible power supply, 무정전 전원공급 장치)까지 상대적으로 높은 사양으로 준비해야 하는 비용적인 문제가 발생할 수 있다. 본 연구에서 제시한 네 가지 기법 중 세 가지는 계산 서버 추가를 통한 수평적 성능 확장에 관한 것이다. 하지만 서버의 추가가 처리 속도 향상으로 이어지지 않음은 물론 오히려 저하시키는 경우가 있다. 본 연구에서는 특정 시간 내로 작업을 완료 시키지 못하면 해당 작업을 반환하여 다른 서버가 처리하는 간단한 방식을 이용한다. 하지만 이런 문제를 지속적으로 발생시키는 계산 서버가 발견된다면 정해진 기준에 따라 계산 작업에서 완전히 퇴출 시켜야 성능 향상에 도움이 된다. 따라서 처리 속도에 대한 정확한 원인을 검사하고 이를 실시간으로 반영할 수 있는 기법이 필요하다.
영상 융합은 특징이 다른 두 개 이상의 영상에 대하여 각 영상의 특징을 모두 갖는 하나의 영상으로 재구성하는 기술로 의료 분야, 군사 분야, 원격 탐사 분야 등 여러 분야에 활용되고 있다. 지금까지 웨이블렛 기반 영상 융합은 주로 이산 웨이블렛 변환 하에서 고주파 영역에서는 표준편차와 같은 액티비티(activity) 측도를 사용하고 저주파 영역에서는 두 영상의 픽셀값의 평균을 취함으로써 이루어져 왔다. 그러나, 이산 웨이블렛 변환은 이동불변(translation-invariance)하지 않으므로 융합 영상에 블록 인공물이 생기곤 한다. 본 논문에서는 이산 웨이블렛 변환의 단점을 보완한 정상 웨이블렛 변환을 이용하여 고주파 영역에서는 영상 특징에 민감하지 않은 사분위수 범위를 사용하고 저주파 영역에서는 고주파 영역의 사분위수 범위 정보를 이용하여 영상을 융합하고자 한다. 영상 실험 결과, 제안된 방법은 정성적이고 정량적인 평가에서 입력 영상의 종류에 관계없이 로버스트한 결과를 낳음을 알 수 있었다.
방사선치료는 수술, 항암치료와 함께 암의 3대 치료방법으로써 많은 암환자들이 방사선치료를 받게 된다. 최대한 많은 방사선을 암에 집중시키고 최대한 적은 방사선을 주변 정상 조직에 가해주기 위해 치료 전 치료계획을 철저히 세우고 품질 관리를 시행하지만 방사선치료가 잘못 시행되어 의도치 않은 방사선이 환자에게 전달되는 의료사고가 발생하기도 한다. 이를 해결하기 위해 환자 내부의 선량을 검증하기 위한 방법을 투과선량 측정을 통한 환자 내부선량의 역추정 방법이 제시되고 있다. 본 연구에서 제시한 투과선량을 이용한 환자선량 계산 방법을 거리역자승법칙, 심부선량백분율, scatter factor를 이용한 방법으로써 실제 환자 선량 평가 가능성에 대해 균질한 물등가 팬텀을 이용한 연구이다. 투과선량에 대한 이온함과 유리선량계의 교정 결과 유리선량계의 신호값이 이온함으로 측정한 선량값에 비해 6 MV에서 0.824, 10 MV에서 0.736배인 것으로 나타났고 scatter factor는 평균적으로 1.4정도인 것으로 확인되었다. 심부선량백분율 데이터를 사용하기 위해 Mayneord F factor를 적용하였으며 위의 정보들을 이용하여 균질한 팬텀에서 알고리즘을 검증한 결과 최대 오차 약 1.65%로 계산이 정확하게 실시됨을 확인하였다.
본 연구에서는 Ozone Monitoring Instrument (OMI) 위성자료를 이용하여 2005년부터 2008년 사이에 활동하였던 Anatahan, La Cumbre, Sierra Negra, Piton 화산 플룸에 존재하는 고농도의 이산화황에 따른 Total Ozone Mapping Spectrometer (OMI-TOMS)와 Differential Optical Absorption Spectrometer (OMI-DOAS) 오존 전량 값의 차이를 정량적으로 비교하였다. 화산 플룸에서 OMI 센서로 측정한 이산화황 농도($OMI-SO_2$)에 따른 두 오존 전량 값의 사이의 차이에서 상당히 높은 상관성($R{\geq}0.5$)과 두 오존 전량 값 사이의 차이가 최대 100 DU에 가깝게 나는 것을 확인 할 수 있었다. 이는 선행연구에서 밝혀진 바와 같이 OMI-TOMS 알고리즘에서 사용하는 파장영역에서 이산화황의 흡수신호가 강하기 때문에, 이산화황의 농도가 높은 환경에서 오존 산출 시 이산화황의 영향을 받은 것으로 보인다. 이외에도 정량적인 분석을 위하여, 이산화황의 농도에 따라 구간별로 나누어 이산화황의 농도에 따른 두 오존 전량 값의 차이 및 이산화황의 농도가 1.0 DU 증가함에 따른 두 오존 전량의 차이를 계산하였다. 이산화황의 농도가 7.0 DU 이상의 높은 조건에서는 두 오존 전량 값 차이의 평균 값이 32.9 DU (표준편차 = 13.5 DU)로 이산화황의 농도가 증가함에 따른 두 오존 전량의 상당한 차이를 확인 할 수 있었다. 또한 TRM (Middle troposphere; Center of mass altitude (CMA) = 7.5 km) 과 STL (Upper troposphere and Stratosphere; CMA= 17 km) 층에서 1.0 DU의 이산화황의 농도가 증가하는 경우 두 오존 값의 차이는 3.9 DU와 4.9 DU로 계산되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.