텔레매틱스에서 위치 정보 서비스를 효과적으로 제공하기 위해 이동 객체와 더불어 시설물과 같은 정적 객체에 대한 위치 정보를 효과적으로 관리하는 데이터베이스 기술들이 요구된다 본 논문에서는 도로 네트워크 데이터베이스를 위한 인덱싱 및 질의 처리 기술 현황에 대하여 고찰한다. 텔레매틱스에서는 영역 질의, k-최근접 이웃 질의, 연속 k-최근접 이웃 질의, 공간 조인 질의 등이 발생하며, 이 중 k-최근접 이웃 질의가 빈발하게 발생한다. k-최근접 이웃 질의를 처리하기 위한 효과적인 방안으로 IER, INE, $VN^3$, 근사 인덱싱 기법 등이 있다. 본 논문에서는 각 기법의 개념, 알고리즘, 장단점에 대하여 고찰한다.
구형 피라미드 기법[1,2]은 d-차원의 공간을 2d개의 구형 피라미드들로 분할하는 특별한 공간 분할 방식을 이용하여 고차원 데이터를 효율적으로 색인할 수 있는 새로운 색인 방법으로 제안되었다. 구형 피라미드 기법은 구형태의 영역질의를 처리하는 알고리즘을 제안하였으나 유사 검색에 많이 사용되는 또 다른 종류의 질의인 최근접 질의를 처리하는 알고리즘을 제안하지 못했다. 본 논문에서는 점진적 최근접 질의 처리 알고리즘을 확장하여 구형피라미드 기법 상에서 효율적으로 최근접 질의를 처리하는 알고리즘을 제안한다. 마지막으로, R*-tree와 X-tree 상에서 구현된 점진적 k-최근접 질의 처리 방법과 다양한 비교 실험을 통하여 구형 피라미드 기법을 이용한 k-최근접 질의 처리 방법이 더 효율적임을 보인다.
이 논문은 질의와 검색 대상 객체가 모두 이동 객체인 경우, 즉 3 차원 폴리라인(polyline) 형태의 경로를 가지는 객체들 간의 연속(continuous) 최근접 질의 처리에 유용한 기법을 제안한다. 질의경로를 따라 객체를 탐색해가면서 질의에 대한 최근접 정보가 변하는 시점을 찾는 것이 목적인 연속 최근접 질의 처리는 전체 질의 경로에 올바른 최근접 정보 리스트를 제공하지만, 기존의 방법들은 검색 대상 객체가 동적인 경우에 적용되기에는 시간에 따라 움직이는 객체의 위치변화를 처리하지 못하고, 질의 시점과 대상 객체간의 시점을 연관시키기 어렵다는 문제점들을 가지고 있다. 따라서 이 논문에서는 데이터 객체들의 궤적 정보는 STR 트리로 유지하고, 질의 경로 세그먼트와 질의의 시간 인터벌에 포함되는 데이터 객체 세그먼트 모두에 대해 추출시간(sampling time) 선택, 스윕라인(sweep line) 적용, 위치 추정 함수 이용 등의 단계를 처리함으로써, 이 문제를 해결하고 질의 경로 전체에 정확한 최근접 객체 정보 리스트를 제공한다. 제안된 기법은 물류정보시스템, 국방정보시스템, 기상, 교통 등 시공간 이동 객체의 질의를 다루는 시스템에 적용할 수 있다.
최근 유클리드 공간 상에서 효율적인 연속 k-최근접(k-Nearest Neighbors) 질의 처리를 위해 그리드 구조 기반의 많은 색인 기법들이 연구되었다. 하지만 기존 기법들은 k-최근접 객체들을 연산하기 위해 불필요한 셀을 접근하여 연산 자원을 낭비하거나 근접한 셀을 알아내는데 너무 큰 연산 비용을 초래한다. 그래서 본 논문에서는 한 셀과 주변 셀과의 거리 관계 패턴을 이용하여 k-최근접 질의 처리시 적은 연산비용과 적은 저장 공간을 사용하는 새로운 k-최근접 질의 처리 기법을 제안한다. 제안하는 기법은 k-최근접 질의 처리 시 거리 값을 기준으로 정렬된 거리 관계 패턴의 상대좌표를 순차적으로 적용하여 근접한 셀을 알아내기 때문에 O(n)의 셀 검색 비용이 요구된다. 또한 본 논문에서는 CPM[1]과 성능을 비교하여 제안하는 기법의 우수성을 입증한다.
이동 객체에 대한 기존 최근접(nearest neighbor, NN) 질의 처리 기법들은 질의 궤적에 대해 연속적으로 정확하게, 질의와 가장 가까운 위치를 유지하면서 움직이는 최근접 객체를 선택할 수 있는 충분한 기준을 가지고 있지 못하다. 이 논문은 질의 객체와 데이터 객체가 모두 이동 객체인 경우에 가장 적합하게 사용되는 객체 궤적에 대한 연속적인 질의 처리를 통해 정확한 결과를 얻을 수 있는 새로운 최근접 질의 처리 기법, 연속 궤적 최근접 질의(CTNN, continuous trajectory nearest neighbor query)를 제안한다. 우리는 두 가지 Approximate, Exact CTNN 기법을 제안하며 이들은 모두 항해 시스템, 교통 통제 시스템, 물류정보 시스템 등 각종 위치 기반 서비스(L8S: location based services) 상에서 다양하게 사용될 수 있다. 이들은 이동 객체 궤적이 미리 알려져 있는 경우 그리고 질의와 데이터 객체가 모두 이동 객체인 경우에 가장 적합하다.
최근접 객체 질의(Nearest Neighbor Query)는 질의가 요청된 지점으로부터 가장 가까운 객체를 찾는 질 의로 위치기반 서비스 분야에서 가장 널리 사용되고 있는 질의의 형태이다. 이를 기반으로 한 지역 최근접 객체 질의 (Range Nearest Neighbor), 연속 최근접 객체 질의(Continuos Nearest Neighbor)등의 확장 된 개념으로 다양한 최근접 객체 질의가 제안되어 왔다. 그러나 지금까지의 최근접 객체 질의를 기반으로 한 연구들은 점으로 표현된 질의를 기준으로 하여 최근접 객체를 찾는 기준점 최근접 객체(Point Nearest Neighbor) 질의를 기반으로 하고 있어, 점으로 표현이 불가능한 1 차원 형태의 질의에 대하여 효과적인 최근접 객체를 검색하는 연구는 연구된 바 없다. 본 논문에서는 한 개 이상의 1 차원 형태의 선분으로 이루어진 질의에 대하여 질의 주변의 객체 중 최근접 객체를 찾는 다중선 최근접 객체 질의 (Polyline Nearest Neighbor)를 정의하고 효과적인 질의 처리 알고리즘을 제안하였다. 제안된 기법의 성능 분석을 위한 실험은 객체와 질의가 다양한 형태로 분포되어 있는 환경아래 진행되었으며, 실험 결과는 기대 값과 근접한 결과 값을 얻었다.
최근 유클리드 공간 상에서 효율적인 k-최근접(k-Nearest Neighbors) 질의 처리를 위해 그리드 구조 기반의 많은 색인 기법들이 연구되었다. 하지만 기존 기법들은 k-최근접 객체들을 연산하기 위해 불필요한 셀을 접근하여 연산 자원을 낭비하거나 근접한 셀을 알아내는데 매우 큰 연산 비용을 초래한다. 그래서 본 논문에서는 한 셀과 주변 셀과의 거리 관계를 나타내는 거리 관계 패턴을 이용하여 k-최근접 질의 처리시 적은 연산 비용과 적은 저장 공간을 사용하는 새로운 k-최근접 질의 처리 기법을 제안한다. 본 논문에서는 k-최근접 질의 처리의 대표적인 기법인 CPM과 성능을 비교하여 제안하는 기법의 우수성을 입증한다.
최근 LBS(location-based service) 및 텔레매틱스(telematics) 응용의 효과적인 지원을 위해, 이상적인 유클리디언(Euclidean) 공간 대신, 실제 도로나 철도와 같은 공간 네트워크(network)를 고려한 연구가 활발하게 수행중이다. 본 논문에서는 공간 네트워크를 고려한 기존 k-최근접 질의 처리 알고리즘의 문제점을 제시하고, 공간 네트워크 데이터베이스에 보다 효율적인 새로운 k-최근접 질의 처리 알고리즘을 제안한다. 제안하는 질의처리 알고리즘은 순서정보 및 Materialization 기법에 근거하며 기존 방법의 검색 성능을 향상시킨 방법이다. 마지막으로 제안하는 k-최근접 알고리즘을 기존의 알고리즘과 성능 비교를 수행한다.
최근 LBS(location-based service) 및 텔레매틱스(telematics) 응용의 효율적인 지원을 위해, 유클리디언(Euclidean) 공간을 대신하여 실제 도로나 철도와 같은 공간 네트워크(network)를 고려한 연구가 활발하게 수행중이다. 그러나 기존 연구에서의 범위 질의 및 k-최근접 질의 처리 알고리즘은 범위나 k 값의 증가에 따라 검색에 필요한 노드 검색 및 거리 계산의 비용 증가로 인하여 선형적인 성능 감소를 보인다. 따라서, 본 논문에서는 공간 네트워크를 위한 기존 질의처리 알고리즘의 성능을 향상시키기 위해, 실체화 기법을 이용한 효율적인 범위 및 k-최근접 질의처리 알고리즘을 제안한다. 아울러, 기존 알고리즘과의 성능 비교를 통하여 제안하는 알고리즘이 우수함을 보인다.
최근 위치 측정 기술과 모바일 기기들의 발달과 함께 위치 기반 서비스가 중요하게 연구되고 있다. 위치기반서비스를 제공하기 위해 많은 연구자들이 맵리듀스를 활용한 다양한 질의 처리 기법을 제안하였다. 그 중에 하나가 맵리듀스를 활용한 리버스 k-최근접 질의 처리 기법이다. 하지만 기존 기법들은 연속 리버스 k-최근접 질의 처리를 수행하기 위해 많은 처리 비용이 요구된다. 본 논문에서는 맵리듀스를 활용한 효율적인 연속 리버스 k-최근접 질의 처리 기법을 제안한다. 제안하는 기법은 60도 가지치기 기법을 이용한다. 제안하는 기법은 60도 가지치기 기법을 활용하여 모니터링 영역을 생성하고 모니터링을 수행하여 결과 업데이트을 수행하기 때문에 효율적으로 결과 업데이트를 수행한다. 또한, 본 논문에서는 제안하는 기법의 우수성을 보이기 위해 기존 기법과의 성능평가를 수행한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.