In this paper, we first propose the security enhancing of authentication protocol for Hash based RFID tag, and then a digital Codec for RFID tag is designed based on the proposed authentication protocol. The protocol is based on a three-way challenge response authentication protocol between the tags and a back-end server. In order to realize a secure cryptographic authentication mechanism, we modify three types of the protocol packets which defined in the ISO/IEC 18000-3 standard. Thus active attacks such as the Man-in-the-middle and Replay attacks can be easily protected. In order to verify effectiveness of the proposed protocol, a digital Codec for RFID tag is designed using Verilog HDL, and also synthesized using Synopsys Design Compiler with Hynix $0.25\;{\mu}m$ standard-cell library. Through security analysis and comparison result, we will show that the proposed scheme has better performance in user data confidentiality, tag anonymity, Man-in-the-middle attack prevention, replay attack, forgery resistance and location tracking.
As the area of informatization has been expanding followed by the development of information communication technology, cloud computing which can use infra sources like server, storage, and network in IT area as an efficient service whenever and wherever skyrockets. But users who use cloud computing technology may have some problems like exposure personal data, surveillance on person, and process on commercial purpose on their personal data. This paper proposes a security technique which protect user's privacy by creating imaginary user information not to be used by other people. The proposed technique virtualizes user's information as an anonymity value not to let other people know user's identity by combining PIN code with it and guarantees user's anonymity. Also it can manage and certificate personal information that is important in cloud computing, so that it can solve security problem of cloud computing which centers all informations. Therefore this paper can assist upgrading of the level of information of poor SMBs through safe use of cloud computing.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.49
no.1
/
pp.81-87
/
2012
The current defacing method for keeping an anonymity of brain images damages the integrity of a precise brain analysis due to over removal, although it maintains the patients' privacy. A novel method has been developed to create an anonymous face model while keeping the voxel values of an image exactly the same as that of the original one. The method contains two steps: construction of a mockup brain template from ten normalized brain images and a substitution of the mockup brain to the brain image. A level set segmentation algorithm is applied to segment a scalp-skull apart from the whole brain volume. The segmented mockup brain is coregistered and normalized to the subject brain image to create an anonymous face model. The validity of this modification is tested through comparing the intensity of voxels inside a brain area from the mockup brain with the original brain image. The result shows that the intensity of voxels inside from the mockup brain is same as ones from an original brain image, while its anonymity is guaranteed.
This study aimed at identifying user recognition of the types and causes of online game trolling through in-depth interview with users of . Online game trolling refers to anti-social behaviors to do acts provoking other users to anger intentionally so induce their actual reaction in online games. Types of online game trolling contained flaming, griefing, unskilled player and lack of understanding on user's rule. And users are recognizing as problems that anonymity is excessively high in the game, a single game has undue significance, team play is given too much emphasis in a situation lacking in social cohesivenessk as the structural causes of trolling in . Accordingly, in order to decrease online game trolling, it is urgent to improve the game-structured layer causing trolling rather than regulate trollers only.
Online social network services that are rapidly growing recently store tremendous data and analyze them for many research areas. To enhance the effectiveness of information, companies or public institutions publish their data and utilize the published data for many purposes. However, a social network containing information of individuals may cause a privacy disclosure problem. Eliminating identifiers such as names is not effective for the privacy protection, since private information can be inferred through the structural information of a social network. In this paper, we consider a new complex attack type that uses both the content and structure information, and propose a model, $\ell$-degree diversity, for the privacy preserving publication of the social network data against such attacks. $\ell$-degree diversity is the first model for applying $\ell$-diversity to social network data publication and through the experiments it shows high data preservation rate.
Journal of the Korea Society of Computer and Information
/
v.24
no.11
/
pp.109-117
/
2019
Recently, the invasion of privacy in medical information has been issued following the interest in the secondary use of mass medical information. The mass medical information is very useful information that can be used in various fields such as disease research and prevention. However, due to privacy laws such as the Privacy Act and Medical Law, this information, including patients' or health professionals' personal information, is difficult to utilize as a secondary use of mass information. To do these problem, various methods such as k-anonymity, l-diversity and differential-privacy that can be utilized while protecting privacy have been developed and utilized in this field. In this paper, we discuss the differential privacy processing of the various methods that have been studied so far, and discuss the problems of differential privacy using Laplace noise and the previously proposed differential privacy. Finally, we propose a new scheme to solve the existing problem by adding a 1-bit status field to the last column of a given data set to confirm the response to queries from analysts.
In the era of the 4th industrial revolution, the big data industry is gathering attention for new business models in the public and private sectors by utilizing various information collected through the internet and mobile. However, although the big data integration and analysis are performed with de-identification techniques, there is still a risk that personal privacy can be exposed. Recently, there are many studies to invent effective methods to maintain the value of data without disclosing personal information. In this paper, a personal information protection system is investigated to boost big data utilization in industrial sectors, such as healthcare and agriculture. The criteria for evaluating the de-identification adequacy of personal information and the protection scope of personal information should be differently applied for each industry. In the field of personal sensitive information-oriented healthcare sector, the minimum value of k-anonymity should be set to 5 or more, which is the average value of other industrial sectors. In agricultural sector, it suggests the inclusion of companion dogs or farmland information as sensitive information. Also, it is desirable to apply the demonstration steps to each region-specific industry.
Seung Hwan Ryu;Yongki Hong;Gihyuk Ko;Heedong Yang;Jong Wan Kim
Journal of the Korea Society of Computer and Information
/
v.28
no.9
/
pp.81-92
/
2023
A privacy model is a technique that quantitatively restricts the possibility and degree of privacy breaches through privacy attacks. Representative models include k-anonymity, l-diversity, t-closeness, and differential privacy. While many privacy models have been studied, research on selecting the most suitable model for a given dataset has been relatively limited. In this study, we develop a system for recommending the suitable privacy model to prevent privacy breaches. To achieve this, we analyze the data features that need to be considered when selecting a model, such as data type, distribution, frequency, and range. Based on privacy model background knowledge that includes information about the relationships between data features and models, we recommend the most appropriate model. Finally, we validate the feasibility and usefulness by implementing a recommendation prototype system.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.2
/
pp.311-319
/
2017
Recently invasion of privacy problem in medical information have been issued following the interest in secondary use of large medical information. These large medical information is very useful information that can be used in various fields such as disease research and prevention. However, due to the privacy laws such as Privacy Act and Medical Law, these informations including patients or health professionals' personal information are difficult to utilize secondary. Accordingly, various methods such as k-anonymity, l-diversity and differential-privacy that can be utilized while protecting privacy have been developed and utilized in this field. In this paper, we study differential privacy processing procedure, one of various methods, and find out about the differential privacy problem using Laplace noise. Finally, we propose a new method using the Shamir's secret sharing method and symemetric key encryption algorithm such as AES for this problem.
Jin-Gyeong Kim;Eun-Young Park;Da–Sol Kim;Cho-Won Kim;Jiyeon Kim
Journal of the Korea Society of Computer and Information
/
v.29
no.10
/
pp.207-218
/
2024
In this paper, we propose a model for identifying drug trafficking organizations and assessing their scale by collecting drug promotional tweets from the social media platform 'X,' with a focus on investigating drug crimes that frequently occur among teenagers and young adults. Recently, various cyber crimes, such as drug distribution, illegal gambling, and sex offense, have been on the rise, exploiting the anonymity provided by social media. Drug trafficking organizations, in particular, operate in a decentralized cell structure, where each member receives anonymous instructions regarding only their specific role and is not directly connected to other members. To track these types of crimes, we designed experimental scenarios using various clustering algorithms, such as K-means Clustering and Spectral Clustering, alongside text embedding models like BERT (Bidirectional Encoder Representations from Transformers) and GloVe (Global Vectors for Word Representation). Furthermore, the clustering results derived from each scenario are validated using Jaccard Similarity and a full-scale investigation. We then analyze tweet clusters identified as the same drug organization across all scenarios, prioritizing the identification of high-priority accounts for cyber investigations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.