• Title/Summary/Keyword: K strain

Search Result 12,685, Processing Time 0.045 seconds

Human and Animal Disease Biomarkers and Biomonitoring of Deoxynivalenol and Related Fungal Metabolites as Cereal and Feed Contaminants (곡물 및 사료오염 데옥시니발레놀 및 대사체에 의한 인축질환 연계 생체지표 및 바이오모니터링)

  • Moon, Yuseok;Kim, Dongwook
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • Deoxynivalenol (DON) and related trichothecene mycotoxins are extensively distributed in the cereal-based food and feed stuffs worldwide. Recent climate changes and global grain trade increased chance of exposure to more DON and related toxic metabolites in poorly managed production systems. Monitoring the biological and environmental exposures to the toxins are crucial in protecting human and animals from toxicities of the hazardous contaminants in food or feeds. Exposure biomarkers including urine DON itself are prone to shift to less harmful metabolites by intestinal microbiota and liver metabolic enzymes. De-epoxyfication of DON by gut microbes such as Eubacterium strain BBSH 797 and Eubacterium sp. DSM 11798 leads to more fecal secretion of DOM-1. By contrast, most of plant-derived DON-glucoside is also easily catabolized to free DON by gut microbes, which produces more burden to body. Phase 2 hepatic metabolism also contributes to the glucuronidation of DON, which can be useful urine biomarkers. However, chemical modification could be very typical depending on the anthropologic or genetic background, luminal bacteria, and hepatic metabolic enzyme susceptibility to the toxins in the diet. After toxin exposure, effect biomarkers are also important in estimating the linkage and mechanisms of foodborne diseases in human and animal population. Most prominent adverse effects are demonstrated in the DON-induced immunological and behavioral disorders. For instance, acutely elevated interleukin-8 from insulted gut exposed to dietaty DON is a dominant clinical biomarker in human and animals. Moreover, subchronic exposure to the toxins is associated with high levels of serum IgA, a biological mediator of IgA nephritis. In particular, anorexia monitoring using mouse models are recently developed to monitor the biological activities of DON-induced feed refusal. It is also mechanistically linked to alteration of serotoin and peptide YY, which are promising biomarkers of neurological disorders by the toxins. As animal-alternative biomonitoring, huamn enterocyte-based assay has been developed and more realistic gut mimetic models would be useful in monitoring the effect biomarkers in resposne to toxic contaminants in the future investigations.

Physicochemical Properties of Raspberry Wine using Active Dry Yeast Strains (활성건조효모를 이용한 복분자주의 이화학적 특성)

  • Moon Young-Ja;Lee Myung-Soon;Sung Chang-Keun
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.4
    • /
    • pp.302-308
    • /
    • 2005
  • To examine the difference in each ingredient between the yeast strain and two raspberry kinds (Rubus crataegifolius Bunge(RCB), Rubus coreanus Miquel(RCM)) in the making of raspberry wine, five active dry yeasts were selected. Regarding the RCM ethanol content, the raspberry wine fermented by Lalvin Wl5 was the highest, while those fermented by Prise de Mousse were the lowest. The pH of the RCM was $3.58\~3.63$, and Montrachet was the highest one of total acidity. In the case of nonflavonoid phenols, the RCM fermented by Montrachet was the highest one, and in the case of flavonoid phenol and total phenol, the RCM fermented by Epernay II was the highest. The content of organic acid in RCM were highest in the following order: citric acid > oxalic acid > malic acid, and tartaric acid was not detected at all. The average content of malic acid in RCM after malolactic fermentation was reduced by almost $65.5\%$, and the RCM fermented by Prise de Mousse, after malolactic fermentation, was $73.3\%$. This latter was the highest, while the RCM fermented by Epernay II was the lowest, at $59.1\%$.

Culture Conditions on the Antimutagenic Effects of Lactobacillus plantarum KLAB21 isolated from Kimchi against N-methyl-N'-nitro-N-nitrosoguanidine and 4-nitroquinoline-1-oxide (김치에서 분리한 Lactobacillus plantarum KLAB21의 배양조건에 따른 N-methyl-N'-nitro-N-nitrosoguanidine과 4-nitroquinoline-1-oxide에 대한 항돌연변이 효과)

  • Rhee, Chang-Ho;Park, Heui-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.417-423
    • /
    • 2000
  • Lactobacillus plantarum KLAB21 isolated from Kimchi has been reported to produce antimutagenic subtance(s) in the culture medium. In this study, antimutagenic effects of the strain KLAB21 were investigated to under various culture conditions maximize the production of antimutagenic substance(s) against N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) on Salmonella typhimurium TA100 and 4-nitroquinoline-1-oxide(NQO) on S. typhimurium TA98. Glucose(2%) as a carbon source and yeast extract(1%) as a nitrogen source resulted in the highest production of the antimutagenic substance(s) against both mutagens in the culture supernatant of L. plantarum KLAB21. The most effective concentrations of bactopeptone as a nitrogen source were 1% against MNNG and 1.5% against NQO. Optimal pH of the medium, culture temperature, and shaking speed for the antimutagenic substance(s) production were pH 7.0, $37^{\circ}C$ and 150 rpm, respectively. Under the optimal condition, the antimutagenic effects of L. plantarum KLAB21 culture supernatant were 98.4% against MNNG on S. typhimurium TA100 and 57.3% against NQO on S. typhimurium TA98.

  • PDF

Detection of the Factors Related to spermatization in Sclerotinia trifoliorum -I. Course of Fertilization (Sclerotinia trifoliorum의 Spermatization에 관여하는 요인(要因)의 검색(檢索) -I. 균(菌)의 수정과정(受精過程))

  • Uhm, Jae Youl;Kim, Young Tae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.127-133
    • /
    • 1987
  • The process of fertilization and changes in anatomical structure of sclerotia during the apothecial formation in Sclerotinia trifoliorum, the causal fungus of sclerotial rot of forage legumes, were investigated. The time of fertilization could be estimated with fair accuracy by the sequencial spermatization of the sclerotia which kept at 15C in saturated moisture. In the case of one strain used in this experiment, fertilization between the sclerotia and spermatia were estimated to take place at around 18days after the sclerotia were placed under the conditions for apothecial induction (15C, saturated moisture). The fertilizable state was maintained for about 45 days and the spermatization thereafter did not induce the apothecial formation. When the sclerotia reached fertilizable state, a number of interwoven hyphal nests were developed within the medulla of sclerotia, regardless of the sexuality of the cultures. Comparing the process of multiplication and growth of the hyphal nests in homothallic and heterothallic culture, they were identified as ascogonium. These ascogonia were persisted for about 45 days. This observation was well coincided with the duration of fertilizable state elucidated by the sequencial spermatization experiment.

  • PDF

Experimental Investigation on Post-Fire Performances of Fly Ash Concrete Filled Hollow Steel Column

  • Nurizaty, Z.;Mariyana, A.A.K;Shek, P.N.;Najmi, A.M. Mohd;Adebayo, Mujedu K.;Sif, Mohamed Tohami M.A;Putra Jaya, Ramadhansyah
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.335-344
    • /
    • 2021
  • In structural engineering practice, understanding the performance of composite columns under extreme loading conditions such as high-rise bulding, long span and heavy loads is essential to accuratly predicting of material responses under severe loads such as fires or earthquakes. Hitherto, the combined effect of partial axial loads and subsequent elevated temperatures on the performance of hollow steel column filled fly ash concrete have not been widely investigated. Comprehensive test was carried out to investigate the effect of elevated temperatures on partial axially loaded square hollow steel column filled fly ash concrete as reported in this paper. Four batches of hollow steel column filled fly ash concrete ( 30 percent replacement of fly ash), (HySC) and normal concrete (CFHS) were subjected to four different load levels, nf of 20%, 30%, 40% and 50% based on ultimate column strength. Subsequently, all batches of the partially damage composite columns were exposed to transient elevated temperature up to 250℃, 450℃ and 650℃ for one hour. The overall stress - strain relationship for both types of composited columns with different concrete fillers were presented for each different partial load levels and elevated temperature exposure. Results show that CFHS column has better performance than HySC at ambient temperature with 1.03 relative difference. However, the residual ultimate compressive strength of HySC subjected to partial axial load and elevated temperature exposure present an improvement compared to CFHS column with percentage difference in range 1.9% to 18.3%. Most of HySC and CFHS column specimens failed due to local buckling at the top and middle section of the column caused by concrete crushing. The columns failed due to global buckling after prolong compression load. After the compression load was lengthened, the columns were found to fail due to global buckling except for HySC02.

Scale Effects of Initial Model and Material on 3-Dimensional Distinct Element Simulation (3차원 개별요소해석 시의 초기 모델 및 재료 스케일 영향)

  • Jeon, Jesung;Shin, Donghoon;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.57-65
    • /
    • 2011
  • Numerical simulations by three-dimensional Particle Flow Code($PFC^{3D}$, Itasca) considering distinct element method (DEM) were carried out for prediction of triaxial compression test with sand material. The effect of scale conditions for numerical model and distinct material on final prediction results was analyzed by numerical models under various scale conditions, and following observations were made from the numerical experiments. It is very useful to model the initial material condition without any porosity conversion from 2-D to 3-D DEM. Numerical experiments have shown that in all cases considered, 3D distinct element modeling could provide good agreement on stress-strain behavior, volume change and strength properties with laboratory testing results. It was important thing to assess reasonable scale ratio of numerical model and distinct elements for saving calculation time and securing calculation efficiency under condition with accuracy and appropriateness as numerical laboratory. As results of DEM simulations under various scale conditions, most of results show that shear strength properties as cohesion and internal friction angle are similar in condition of $D_{mod}/D_{gmax}$ < 10. It shows that 3-D distinct element method could be used as efficient tool to assess strength properties by numerical laboratory technique.

Effect of vacuum annealing and characterization of diecast ADC12 aluminum alloys (다이캐스팅 공정으로 제조한 ADC12 알루미늄 합금의 물성 향상 및 진공 열처리 효과)

  • Jo, Jihoon;Ham, Daseul;Oh, Seongchan;Cha, Su Yeon;Kang, Hyon Chol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • We report structural, mechanical, and thermal properties of diecast ADC12 aluminum alloys characterized using synchrotron X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray (EDX) analysis, thermal conductivity (λ), Vickers hardness (Hv), and stress-strain measurements. We also studied the effect of post-annealing performed in a vacuum atmosphere on the mechanical properties of diecast ADC12 alloys. EDX and XRD results revealed that Al2Cu and AlCu3 grains are formed, well dispersed in Al base and highly crystalline. Ultimate tensile strength (UTS) of 307.9 ± 9.1 MPa and elongation of 2.98 ± 0.62 % were estimated. λ was 129.3 ± 0.27 W/m·K and Hv was approximately 130. Both values were significantly higher than the reported values. At annealing temperatures ranging from 25 to 200℃, UTS and Hv values remained constant, while as the annealing temperature increased to 500℃, these values gradually decreased. This is because stabilization of the microstructure improves toughness and ductility.

Evaluation of Acaricidal Effect Against Two-spotted Spider Mite Collected from Strawberry in Greenhouse (딸기 시설 하우스 점박이응애에 대한 살비 효과 평가)

  • Kwon, D.H.;Ahn, Y.K.;Hong, K.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • In the strawberry cultivation areas and domestic farms, two-spotted spider mites are the most serious pests. It decreases the product yield due to the direct feeding of chlorophyll by the mites resulting in reduced photosynthetic ability of host plant. In this study, a simplified acaricidal effect evaluation system (SAEES) was employed to choose the effective acaricidal products among 10 items based on leaf-dipping bioassay methods. SAEES had the advantage of being able to screen four commercial products with three replications at the same time in the recommended concentration. The susceptible strains (SL_YS) showed a high mortality rate of about 90-100%, whereas the mortality of local strains was differed by each acaricides. It suggests that the acaricide responses of field populations might differ due to spray frequencies and acaricide product. An efficacy index (0.8-1.0) was determined based on the mortality of susceptible strain, which would allow the most effective commercial products to be selected by the range of this index. In summary, SAEES will enable the selection of effective commercial products and contribute to increasing control against T. urticae in strawberries.

Elastic Wave Characteristics in Cemented Engineered Soils (고결된 Engineered Soils의 탄성파 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Behaviors of cemented engineered soils, composed of rigid sand particle and soft rubber particle, are investigated under $K_o$ condition. The uncemented and cemented specimens are prepared with various sand volume fractions to estimate the effect of the cementation in mixtures. The vertical deformation and elastic wave velocities with vertical stress are measured. The bender elements and PZT sensors are used to measure elastic wave velocities. After cementation, the slope of vertical strain shows bilinear and is similar to that of uncemented specimen after decementation. Normalized vertical strains can be divided into capillary force, cementation, and decementation region. The first deflection of the shear wave in near field matches the first arrival of the primary wave. The elastic wave velocities dramatically increase due to cementation hardening under the fixed vertical stress, and are almost identical with additional stress. After decementation, the elastic wave velocities increase with increase in the vertical stress. The effect of cementation hinders the typical rubber-like, sand-like, and transition behaviors observed in uncemented specimens. Different mechanism can be expected in decementation of the rigid-soft particle mixtures due to the sand fraction. a shape change of individual particles in low sand fraction specimens; a fabric change between particles in high sand fraction specimens. This study suggests that behaviors of cemented engineered soils, composed of rigid-soft particles, are distinguished due to the cementation and decementation from those of uncemented specimens.

Effect of Water on the Lightweight Air-Mixed Soil Containing Silt Used for Road Embankment (도로성토체로 사용된 실트질 계열의 경랑기포혼합토에 대한 물의 영향)

  • Hwang, Joong-Ho;Ahn, Young-Kyun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.23-32
    • /
    • 2010
  • This study was especially conducted to find out the characteristics of the lightweight air-mixed soil (slurry density 10 kN/$m^3$) containing silt related to water. Compression strength, permeability, and capillary height of the lightweight air-mixed soil were studied, and also to support these studies, the structure of that soil was analyzed in detail. Air bubbles of various sizes are inside the lightweight air-mixed soil, and its distribution in a location is almost constant. A numerous tiny pores are inside the air bubbles so that the lightweight air-mixed soil can be saturated with water. Porosity is also estimated through the image analysis. Peak strength of the lightweight air-mixed soil is not dependent on water, but behavior of stress-strain is affected by the water. Permeability is about $4.857{\times}10^{-6}cm/sec$, which is a little bit higher than the clay's permeability. Capillary rise occurs rapidly at the beginning of the test until the lapse of 100 minutes and then its increase rate becomes slow. The capillary rise causes the increase of the density of the lightweight air-mixed soil, and thus it is required to pay attention to this phenomenon during structure design and maintenance of the lightweight air-mixed soil.