• Title/Summary/Keyword: K means clustering

검색결과 1,120건 처리시간 0.031초

2단계 k-평균 군집화를 활용한 한류컨텐츠 기업 주가 예측 연구 (A Study On Predicting Stock Prices Of Hallyu Content Companies Using Two-Stage k-Means Clustering)

  • 김정우
    • 한국융합학회논문지
    • /
    • 제12권7호
    • /
    • pp.169-179
    • /
    • 2021
  • 본 연구는 기존의 k-평균 군집화를 활용한 2단계 k-평균 군집화 방법을 사용하여 한류콘텐츠 기업들의 주식가격을 예측함으로써 본 기법이 예측성능을 개선할 수 있음을 보이고자 하였다. 이를 위하여 본 연구는 2단계 k-평균 군집화의 알고리즘을 소개하고, 다양한 머신러닝 기법들과의 예측값 비교를 통하여 본 기법의 예측성능을 검증하였다. 본 기법은 기존의 k-평균 군집화로부터 얻어진 군집들 중에서 예측 대상에 근접한 군집을 추출하고 이 군집에 k-평군 군집화 방법을 다시 적용하여 실제 값에 보다 근접한 군집을 탐색하는 방식이다. 본 기법을 한류콘텐츠 기업들의 주가 시계열 자료에 적용한 결과, 다른 머신러닝 기법의 예측값들보다 실제 주식가격에 근접한 예측값을 나타내어, 기존의 k-평균 군집화 방법보다 개선된 예측성능을 보였다. 또한, 본 기법은 상대적으로 적은 크기의 군집을 사용함에도 불구하고 비교적 안정적인 예측값을 나타내었다. 이에 따라, 2단계 k-평균 군집화 기법은 예측의 정확성과 안정성을 동시에 개선할 수 있으며, 소규모 자료에도 유용할 수 있는 새로운 군집화 방식을 제시했다고 볼 수 있다. 향후에는 본 기법을 발전시켜 대규모 자료에도 적용하는 방안을 검토하는 연구가 요구된다.

Revising K-Means Clustering under Semi-Supervision

  • Huh Myung-Hoe;Yi SeongKeun;Lee Yonggoo
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.531-538
    • /
    • 2005
  • In k-means clustering, we standardize variables before clustering and iterate two steps: units allocation by Euclidean sense and centroids updating. In applications to DB marketing where clusters are to be used as customer segments with similar consumption behaviors, we frequently acquire additional variables on the customers or the units through marketing campaigns a posteriori. Hence we need to modify the clusters originally formed after each campaign. The aim of this study is to propose a revision method of k-means clusters, incorporating added information by weighting clustering variables. We illustrate the proposed method in an empirical case.

디자인 패턴을 적용한 위성영상처리를 위한 군집화 분류시스템의 설계 (A Design of Clustering Classification Systems using Satellite Remote Sensing Images Based on Design Patterns)

  • 김동연;김진일
    • 정보처리학회논문지B
    • /
    • 제9B권3호
    • /
    • pp.319-326
    • /
    • 2002
  • 본 논문에서는 위성영상을 처리하기 위한 무감독분류 기법인 군집분류 시스템을 설계하고 구현하였다. 구현된 시스템은 새로운 위성영상 포맷과 군집분류 기법의 지원이 용이하고, 확장성 있는 시스템의 설계를 위하여 팩토리 패턴과 전략적 패턴 등 다양한 디자인 패턴을 적용하였다. 군집분류 시스템은 순차군집분류 기법, K-Means 군집분류 기법, ISODATA 기법, Fuzzy C-Means군집분류 기법을 설계, 구현하였으며 Landsat TM 위성영상을 분류기의 입력영상으로 실험하였다. 그 결과 군집분류 기법은 사전지식이 없는 위성영상의 분류를 위한 표본영역의 추출작업과 위성영상의 실시간 분류에 효과적인 사용이 가능함을 보였으며, 재사용성 및 확장성이 우수한 시스템을 개발하였다.

Colorectal Cancer Staging Using Three Clustering Methods Based on Preoperative Clinical Findings

  • Pourahmad, Saeedeh;Pourhashemi, Soudabeh;Mohammadianpanah, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.823-827
    • /
    • 2016
  • Determination of the colorectal cancer stage is possible only after surgery based on pathology results. However, sometimes this may prove impossible. The aim of the present study was to determine colorectal cancer stage using three clustering methods based on preoperative clinical findings. All patients referred to the Colorectal Research Center of Shiraz University of Medical Sciences for colorectal cancer surgery during 2006 to 2014 were enrolled in the study. Accordingly, 117 cases participated. Three clustering algorithms were utilized including k-means, hierarchical and fuzzy c-means clustering methods. External validity measures such as sensitivity, specificity and accuracy were used for evaluation of the methods. The results revealed maximum accuracy and sensitivity values for the hierarchical and a maximum specificity value for the fuzzy c-means clustering methods. Furthermore, according to the internal validity measures for the present data set, the optimal number of clusters was two (silhouette coefficient) and the fuzzy c-means algorithm was more appropriate than the k-means clustering approach by increasing the number of clusters.

Subtractive Clustering 알고리즘을 이용한 퍼지 RBF 뉴럴네트워크의 동정 (Genetically Optimization of Fuzzy C-Means Clustering based Fuzzy Neural Networks)

  • 최정내;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.239-240
    • /
    • 2008
  • 본 논문에서는 Subtractive clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network (FRBFNN)의 규칙 수를 자동적으로 생성하는 방법을 제시한다. FRBFNN은 멤버쉽 함수로써 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 Fuzzy C-Means clustering 알고리즘에서 사용하는 거리에 기한 멤버쉽 함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정하는 구조이다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 하는 Subtractive clustering 알고리즘을 사용하여 퍼지 규칙의 수와 같은 의미를 갖는 분할할 입력공간의 수와 분할된 입력공간의 중심값을 동정하며, Least Square Estimator (LSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정 한다.

  • PDF

An Improved Automated Spectral Clustering Algorithm

  • Xiaodan Lv
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.185-199
    • /
    • 2024
  • In this paper, an improved automated spectral clustering (IASC) algorithm is proposed to address the limitations of the traditional spectral clustering (TSC) algorithm, particularly its inability to automatically determine the number of clusters. Firstly, a cluster number evaluation factor based on the optimal clustering principle is proposed. By iterating through different k values, the value corresponding to the largest evaluation factor was selected as the first-rank number of clusters. Secondly, the IASC algorithm adopts a density-sensitive distance to measure the similarity between the sample points. This rendered a high similarity to the data distributed in the same high-density area. Thirdly, to improve clustering accuracy, the IASC algorithm uses the cosine angle classification method instead of K-means to classify the eigenvectors. Six algorithms-K-means, fuzzy C-means, TSC, EIGENGAP, DBSCAN, and density peak-were compared with the proposed algorithm on six datasets. The results show that the IASC algorithm not only automatically determines the number of clusters but also obtains better clustering accuracy on both synthetic and UCI datasets.

VS-FCM: Validity-guided Spatial Fuzzy c-Means Clustering for Image Segmentation

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.89-93
    • /
    • 2010
  • In this paper a new fuzzy clustering approach to the color clustering problem has been proposed. To deal with the limitations of the traditional FCM algorithm, we propose a spatial homogeneity-based FCM algorithm. Moreover, the cluster validity index is employed to automatically determine the number of clusters for a given image. We refer to this method as VS-FCM algorithm. The effectiveness of the proposed method is demonstrated through various clustering examples.

K-means based Clustering Method with a Fixed Number of Cluster Members

  • Yi, Faliu;Moon, Inkyu
    • 한국멀티미디어학회논문지
    • /
    • 제17권10호
    • /
    • pp.1160-1170
    • /
    • 2014
  • Clustering methods are very useful in many fields such as data mining, classification, and object recognition. Both the supervised and unsupervised grouping approaches can classify a series of sample data with a predefined or automatically assigned cluster number. However, there is no constraint on the number of elements for each cluster. Numbers of cluster members for each cluster obtained from clustering schemes are usually random. Thus, some clusters possess a large number of elements whereas others only have a few members. In some areas such as logistics management, a fixed number of members are preferred for each cluster or logistic center. Consequently, it is necessary to design a clustering method that can automatically adjust the number of group elements. In this paper, a k-means based clustering method with a fixed number of cluster members is proposed. In the proposed method, first, the data samples are clustered using the k-means algorithm. Then, the number of group elements is adjusted by employing a greedy strategy. Experimental results demonstrate that the proposed clustering scheme can classify data samples efficiently for a fixed number of cluster members.

색상 군집화를 이용한 입술탐지 알고리즘 (A Lip Detection Algorithm Using Color Clustering)

  • 정종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.37-43
    • /
    • 2014
  • 본 논문에서는 색상 군집화를 이용한 입술탐지 알고리즘을 제안한다. RGB 색상 모델로 주어진 입력영상에서 AdaBoost 알고리즘을 이용하여 얼굴영역을 추출한 후, 얼굴영역을 Lab 컬러 모델로 변환한다. Lab 컬러 모델에서 a 성분은 입술과 유사한 색상을 잘 표현할 수 있는 반면 b 성분은 입술의 보색을 표현할 수 있기 때문에 Lab 컬러로 표현된 얼굴영역에서 a와 b 성분을 기준으로 최단 이웃(nearest neighbour) 군집화 알고리즘을 이용하여 피부 영역을 분리한 후, K-means 색상 군집화를 통해 입술 후보 영역을 추출하고, 마지막으로 기하학적 특징을 이용하여 최종적인 입술영역을 탐지하였다. 실험 결과는 제안된 방법이 강건하게 입술을 탐지함을 보인다.

차감 및 중력 fuzzy C-means 클러스터링을 이용한 칼라 영상 분할에 관한 연구 (Segmentation of Color Image by Subtractive and Gravity Fuzzy C-means Clustering)

  • 진영근;김태균
    • 전기전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.93-100
    • /
    • 1997
  • 칼라 영상 분할의 한 방법으로 fuzzy C-means를 이용한 방법이 많이 연구되었으나, 이 방법은 클러스터의 개수가 정해져야 사용할 수 있는 방법이다. 분할해야 할 데이터가 많은 경우 예비 분할을 수행하여 예비 분할 되지 않는 데이터들에 대해서 상세 분할을 fuzzy C-means를 사용하여 분할 하나 예비 분할된 데이터의 클러스터 중심과 상세 분할로 만들어진 클러스터의 중심과는 연계성이 없어진다. 본 연구에서는 이것을 보완하기 위하여 차감 클러스터링을 사용하여 칼라 영상의 클러스터의 개수와 중심을 구한 후, 이것을 이용하여 영상을 예비 분할하고 중력을 가진 fuzzy C-means를 사용하여 분할되지 않은 나머지 부분과 클러스터의 중심을 최적화 시켜 분할하는 알고리듬을 제안한다. 제안된 방법의 정성적인 평가를 수행하여 본 논문에서 제시된 방법이 우수함을 보인다.

  • PDF