• Title/Summary/Keyword: Jurkat cell

Search Result 135, Processing Time 0.031 seconds

Identification of Biomarkers for Radiation Response Using cDNA Microarray

  • Park, Woong-Yang
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.29-44
    • /
    • 2001
  • DNA damage by physical insult including UV and g-radiation might provoke genetic alterations in cells, which is followed by either acute cell death or tumorigenesis. The responsiveness to g-radiation depends on cellular context of target cells. To understand the mechanisms of checkpoint control, repair and cell death following genotoxic stimu]i, cDNA microarray can provide the gene expression profile. To make a profile of gene expression in irradiated Jurkat T cells, we hybridized the cDNA microarray using cDNA from g-irradiated Jurkat T cells. Jurkat T cells were exposed to 4Gy to 16Gy, and total RNA were extracted at 4 to 24 hrs after irradiation. The hybridization of the microarray to fluorescence-labeled cDNA from treated and untreated cells was analyzed by bioinformatic analysis to address relative changes in expression levels of the genes present in the array. Responses varied widely in different time points, suggesting acute stress response and chronic restoration or cell death. From these results we could select 384 genes related to radiation response in Tcells, and radiation response might be different in various types of cells. Using Radchip, we could separate "the exposed" from control PBMCs. We propose that Radchip might be useful to check the radiation research as well as radiation carcinogenesis.

  • PDF

Inhibitive Effects of Meju Extracts Made with a Single Inoculum of the Fungi Isolated from the Traditional Meju on the Human Leukemia Cell Line (전통 메주에서 분리된 단독균으로 제조한 메주추출물의 혈액암세포에 대한 저해효과)

  • Han, Jung;Kim, Hyun-Jeong;Lee, Sang-Sun;Lee, In-Seon
    • The Korean Journal of Mycology
    • /
    • v.27 no.4 s.91
    • /
    • pp.312-317
    • /
    • 1999
  • In order to study the antitumoral effect of meju extracts, which was made with a single inoculum of the microorganism, the cytotoxicity effects on several human leukemia cells such as promyelocytic leukemia cell (HL60), histiocytic lymphoma cell (U937) and acute T-cell leukemia Jurkat cell, and lymphocyte were analyzed by MTT assay. Twenty one microbes, mainly fungal genera, were isolated from Korean traditional mejus of different regions. From those collected isolates, meju was manufactured and extracted with 80% methanol, respectively. Meju methanol extracts exhibited low activites in cytotoxicity tests on HL60 cell, but high antitumoral effects of meju methanol extracts were shown on U937 and Jurkat cells. Meju methanol extracts made with a genera of Mucor, Absidia and Aspergillus showed prominant cytotoxic activities, especially. However all these extracts had no inhibitory effects on the cell growth of lymphocyte under the same conditions.

  • PDF

A Natural L-Arginine Analog, L-Canavanine-Induced Apoptosis is Suppressed by Protein Tyrosine Kinase p56lck in Human Acute Leukemia Jurkat T Cells (인체 급성백혈병 Jurkat T 세포에 있어서 L-canavanine에 의해 유도되는 세포자살기전에 미치는 단백질 티로신 키나아제 p56lck의 저해 효과)

  • Park, Hae-Sun;Jun, Do-Youn;Woo, Hyun-Ju;Rue, Seok-Woo;Kim, Sang-Kook;Kim, Kyung-Min;Park, Wan;Moon, Byung-Jo;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1529-1537
    • /
    • 2009
  • To elucidate further the antitumor effects of a natural L-arginine analogue, L-canavanine, the mechanism underlying apoptogenic activity of L-canavanine and its modulation by protein tyrosine kinase $p56^{lck}$ was investigated in human Jurkat T cells. When the cells were treated with 1.25 to 2.5 mM L-canavanine for 36 h, several apoptotic events including mitochondrial membrane potential (${\Delta\Psi}m$) loss, activation of caspase-9, -3, -8, and -7, poly (ADP-ribose) polymerase (PARP) degradation, and DNA fragmentation were induced without alteration in the levels of Fas or FasL. These apoptotic changes were more significant in $p56^{lck}$-deficient Jurkat clone JCaM1.6 than in $p56^{lck}$-positive Jurkat clone E6.1. The L-canavanine-induced apoptosis observed in $p56^{lck}$-deficient JCaM1.6 cells was significantly reduced by introducing $p56^{lck}$ gene into JCaM1.6 cells by stable transfection. Treatment of JCaM1.6/lck cells with L-canavanine caused a transient 1.6-fold increase in the kinase activity of $p56^{lck}$. Both FADD-positive wild-type Jurkat T cell clone A3 and FADD-deficient Jurkat T cell clone I2.1 exhibited a similar susceptibility to the cytotoxicity of L-canavanine, excluding involvement of Fas/FasL system in triggering L-canavanine-induced apoptosis. The L-canavanine-induced apoptotic sub-$G_1$ peak and activation of caspase-3, -8, and -7 were abrogated by pan-caspase inhibitor (z-VAD-fmk), whereas L-canavanine-induced activation of caspase-9 was not affected. These results demonstrated that L-canavanine caused apoptosis of Jurkat T cells via the loss of ${\Delta\Psi}m$, and the activation of caspase-9, -3, -8, and -7, leading to PARP degradation, and that the $p56^{lck}$ kinase attenuated the ${\Delta\Psi}m$ loss and activation of caspases, and thus contributed as a negative regulator to L-canavanine-induced apoptosis.

Effects of Substance P on the Cell Proliferation and IL-2 Production of T Lymphocyte (Substance P가 T 임파구의 세포증식과 IL-2 생산에 미치는 영향)

  • Moon, Jin-Kyun;Choi, Byung-Son;Lee, Seok-Cho;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.805-818
    • /
    • 1997
  • Immune responses of periodontal tissue may be regulated by products of sensory afferent nerve endings such as neuropeptides. Substance P(SP), a tachykinin neuropeptide, has been previously reported to stimulate the activities of T lymphocyte. Therefore, I examined the role of SP in IL-2 production and cell proliferation by using a homogeneous line of T lymphocytes(Jurkat and HuT78). Cell proliferation rate was determined by [$^3H$]-thymidine incorporation test, and IL-2 was quantitated by the growth rate of CD4+ IL-2-dependent T lymphocyte line CTLL-2. SP stimulated cell proliferation of T lymphocytes at the concentration of $10^{-12}$ and $10^{-8}$M in a biphasic bell-shape dose-dependent manner. However, SP alone did not induce IL-2 release at the concentration range of $10^{-6}$ to $10^{-14}$M. The upregulation of IL-2 release was observed when $10^{-12}$M SP was applied together with mitogens such as Con A or PHA+PMA on T cell lines, especially on Jurkat. Con A or PHA+PMA demonstrated to increase the rate of cell proliferation of Jurkat, which had shown to produce much amount of IL-2 indicating that mitogen-induced cell proliferation might be partially influenced by released IL-2. It was concluded that regulatory effects of SP on the immune/inflammatory response could be mediated through the costimulatory upregulation of IL-2 production and increase of cell proliferation of T lymphocyte.

  • PDF

Inhibition of Jurkat T Cell Proliferation by Active Components of Rumex japonicus Roots Via Induced Mitochondrial Damage and Apoptosis Promotion

  • Qiu, Yinda;Li, Aoding;Lee, Jina;Lee, Jeong Eun;Lee, Eun-Woo;Cho, Namki;Yoo, Hee Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1885-1895
    • /
    • 2020
  • Rumex japonicus Houtt (RJH) is a valuable plant used in traditional medicine to treat several diseases, such as scabies and jaundice. In this study, Jurkat cell growth inhibitory extracts of R. japonicus roots were subjected to bioassay-guided fractionation, resulting in the isolation of three naphthalene derivatives (3-5) along with one anthraquinone (6) and two phenolic compounds (1 and 2). Among these compounds, 2-methoxystypandrone (5) exhibited potent anti-proliferative effects on Jurkat cells. Analysis by flow cytometry confirmed that 2-methoxystypandrone (5) could significantly reduce mitochondrial membrane potential and promote increased levels of mitochondrial reactive oxygen species (ROS), suggesting a strong mitochondrial depolarization effect. Real-time quantitative polymerase chain reaction (qPCR) analysis was also performed, and the results revealed that the accumulation of ROS was caused by reduced mRNA expression levels of heme oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). In addition, 2-methoxystypandrone (5) triggered strong apoptosis that was mediated by the arrest of the G0/G1 phase of the cell cycle. Furthermore, 2-methoxystypandrone (5) downregulated p-IκB-α, p-NF-κB p65, Bcl2, and Bcl-xl and upregulated BAX proteins. Taken together, these findings revealed that 2-methoxystypandrone (5) isolated from RJH could potentially serve as an early lead compound for leukemia treatment involving intracellular signaling by increasing mitochondrial ROS and exerting anti-proliferative effects.

Induction of Apoptotic Cell Death in Human Jurkat T Cells by a Chlorophyll Derivative (Cp-D) Isolated from Actinidia arguta Planchon

  • Park, Youn-Hee;Chun, En-Mi;Bae, Myung-Ae;Seu, Young-Bae;Song, Kyung-Sik;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • The chloroform and methanol (2;1, v/v) extract from an edible plant, Actinidia arguta Planchon, appeared to possess antitumor activity against human leukemias Jurkat T and U937 cells through inducing apoptosis. The substance in the solvent extract was purified by silica gel column chromatography, preparative TLC, and Sephadex LH-20 column chromatography. Characteristics of the substance analyzed by UV scanning analysis, $^1H$ and $^{13}C$ NMR spectra suggested that the substance belongs to the chlorophyll derivatives-like group. The $IC_{50}$ value of the chlorophyll derivative (Cp-D) determined by MTT assay was $15\mu\textrm{g}/ml$ for Jurkat, $10\mu\textrm{g}/ml$ for U937, and $11.4\mu\textrm{g}/ml$ for HL-60m and was more toxic to these leukemias than to solid tumors or normal fibroblast. In order to elucidate cellular mechanisms underlying the cytotoxicity, the effect of the Cp-D on Jurkat T cells was investigated. When cells were treated with the Cp-D at a concentration of $15\mu\textrm{g}/ml$, [3H]thymidine incorporation declined rapidly and wa undetectable in 1h. However, no significant changes were made in the cell cycle distribution of the cells by 24h. The sub-Gl peak representing apoptotic cells began to be detectable in 36h, at which time apoptotic DNA fragmentation was also detected on agarose gel electrophoresis, demonstrating that the cytotoxic effect of the Cp-D is attributable to the induced apoptosis. Under the same conditions, although the protein level of cyclin-dependent kinases such as cdc4, csk6, cdk2, and cdc2 was not significantly changed until 24h, the kinase activity of all c안 rapidly declined and reached a minimum level within 1-6h and then recovered to the initial level by 12h and sustained until 24h. These results suggest that inactivation of cdks at an inappropriate time during the cell cycle progression in jurkat T cells following a treatment with the Cp-D leads to induction of apoptotic cell death.

  • PDF

Pharmacologic Inhibition of Autophagy Sensitizes Human Acute Leukemia Jurkat T Cells to Acacetin-Induced Apoptosis

  • Lee, Ji Young;Jun, Do Youn;Kim, Ki Yun;Ha, Eun Ji;Woo, Mi Hee;Ko, Jee Youn;Yun, Young Ho;Oh, In-Seok;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.197-205
    • /
    • 2017
  • Exposure of Jurkat T cell clone (J/Neo cells) to acacetin (5,7-dihydroxy-4'-methoxyflavone), which is present in barnyard millet (Echinochloa esculenta (A. Braun)) grains, caused cytotoxicity, enhancement of apoptotic $sub-G_1$ rate, Bak activation, loss of mitochondrial membrane potential (${\Delta}{\Psi}m$), activation of caspase-9 and caspase-3, degradation of poly(ADP-ribose) polymerase, and FITC-Annexin V-stainable phosphatidylserine exposure on the external surface of the cytoplasmic membrane without accompanying necrosis. These apoptotic responses were abrogated in Jurkat T cell clone (J/Bcl-xL) overexpressing Bcl-xL. Under the same conditions, cellular autophagic responses, including suppression of the Akt-mTOR pathway and p62/SQSTM1 down-regulation, were commonly detected in J/Neo and J/Bcl-xL cells; however, formation of acridine orange-stainable acidic vascular organelles, LC3-I/II conversion, and Beclin-1 phosphorylation (Ser-15) were detected only in J/Neo cells. Correspondingly, concomitant treatment with the autophagy inhibitor (3-methyladenine or LY294002) appeared to enhance acacetin-induced apoptotic responses, such as Bak activation, ${\Delta}{\Psi}m$ loss, activation of caspase-9 and caspase-3, and apoptotic $sub-G_1$ accumulation. This indicated that acacetin could induce apoptosis and cytoprotective autophagy in Jurkat T cells simultaneously. Together, these results demonstrate that acacetin induces not only apoptotic cell death via activation of Bak, loss of ${\Delta}{\Psi}m$, and activation of the mitochondrial caspase cascade, but also cytoprotective autophagy resulting from suppression of the Akt-mTOR pathway. Furthermore, pharmacologic inhibition of the autophagy pathway augments the activation of Bak and resultant mitochondrial damage-mediated apoptosis in Jurkat T cells.

Apoptotic Effect of Rubia cordifolia Dichloromethane Extracts on Human Acute Jurkat T Cells (천초근 dichloromethane 추출물의 Jurkat T 세포에서 세포사멸 효과)

  • Kim, Ji-Hye;Lee, Jong-Hwan;Kim, Young-Ho;Kim, Kwang-Hyeon
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.163-168
    • /
    • 2009
  • To understand cytotoxic activity of Rubia cordifolia L. (Rubiaceae), which has been used as a traditional oriental medicine, the mechanism underlying cytotoxic effect of its extract on human acute Jurkat T cells was investigated. The methanol extract of roots (3 kg) of R. codifolia was evaporated, dissolved in water, and then extracted by dichloromethane. The substances in the chloroform extract showing the most cytotoxic activity were further purified by a series of preparative HPLC. The extracted active substance (65 mg) was designated as CCH1. When Jurkat T cells were treated with CCH1 at concentration ranging from 0.5 to 2.0 ${\mu}g$/ml, apoptotic phenomena of cells companying several subsequent biochemical reactions such as mitochondria cytochrome c release, activation of casapase-8, -9, and caspase- 3, degradation of PARP and DNA fragmentation occurred via mitochondria-dependent pathway. However, abrogation of apoptosis was observed in an ectopic expression of Bcl-xL, which is a suppressor for mitochondrial cytochrome c release. These results demonstrate that the cytotoxicity of CCH1 against Jurkat T cells is attributable to apoptosis mediated by mitochodria-dependent death-signaling regulated by Bcl-xL. In addition, the CCH1 is more potent to leukemia Jurkat T cell than to human peripheral blood monocyte cells (PBMC).

Cytotoxic Effect of Triglycerides via Apoptotic Caspase Pathway in Immune and Non-immune Cell Lines

  • Lim, Jaewon;Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.66-74
    • /
    • 2019
  • Hyperlipidemia is defined as conditions of the accumulation of lipids such as free fatty acids (FFA), triglyceride (TG), cholesterol and/or phospholipid in the bloodstream. Hyperlipidemia can cause lipid accumulation in non-adipose tissue, which is lipid-cytotoxic effects in many tissues and mediates cell dysfunction, inflammation or programmed cell death (PCD). TG is considered to be a major cause of atherosclerosis through inflammatory necrosis of vascular endothelial cells. Recently, TG have also been shown to exhibit lipid-cytotoxicity and induce PCD. Therefore, we investigated the effect of TG on the cytotoxic effect of various cell types. When exposed to TG, the cell viability of U937 monocytes and Jurkat T lymphocytes, as well as the cell viability of MCF-7, a non-immune cell, decreased in time- and dose-dependent manner. In U937 cells and Jurkat cells, caspase-9, an intrinsic apoptotic caspase, and caspase-8, an extrinsic apoptotic caspase, were increased by exposure to TG. However, in TG-treated MCF-7 cells, caspase-8 activity increased only without caspase-9 activity. In addition, the reduction of cell viability by TG was recovered when all three cell lines were treated with pan-caspase inhibitor. These results suggest that activation of apoptotic caspases by TG causes lipotoxic effect and decreases cell viability.

Cap-Modified Hydroxamate Analogues as Histone Deacetylases Inhibitors and Antitumor Agents

  • Zhang, Qing-Wei;Feng, Juan;Li, Jian-Qi
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.129-134
    • /
    • 2014
  • Two series of SAHA-liked hydroxamate analogues were designed, synthesized and evaluated for their biological activities against nuclear HDACs. Compounds of Series I were found to be very effective inhibitors of cancer cell growth in the PC-3, Hut78, K562 and Jurkat E6-1 cancer cell lines with mean $IC_{50}$ values from $0.54{\mu}M$ (Ic, Jurkat E6-1) to $7.73{\mu}M$ (Ib, K562), indicating that they are cell permeable and the benzimidazolyl-based ligands are flexible enough to occupy the binding site of HDAC.