• 제목/요약/키워드: Jurkat cell

검색결과 135건 처리시간 0.032초

Mitogen-activated protein kinase signaling pathway mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced apoptosis in Jurkat T cells.

  • Kwon, Myung-Ja;Jeong, Kyu-Shik;Choi, Eun-Jeong;Lee, Byung-Ho
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.75.3-76
    • /
    • 2003
  • The present study was performed to examine mitogen-activated protein kinase associated pathways in mediation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced cell apoptosis in cultured Jurkat T cells. TCDD significantly decreased cell viability in a concentration-dependent manner (p<0.05 at 10-300 nM). TCDD (10 nM) also time-dependently decreased cell viability (p<0.05 at 12-48 h). c-Jun NH$_2$-terminal kinase was significantly phosphorylated with TCDD treatment in a time dependent manner. (omitted)

  • PDF

Identification of Immune Responsive Genes on Benzene, Toluene and o-Xylene in Jurkat Cells Using 35 k Human Oligomicroarray

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.229-235
    • /
    • 2006
  • Volatile organic compounds (VOCs) are a major component of urban air pollution. It is documented that low exposure levels of VOCs induce alterations in immune reactivity resulting in a subsequent higher risk for the development of allergic reactivity and asthma. Despite these facts, there are few reports on the affected primary target and the underlying effective causal mechanisms. So in this study, to better understand the risk of BTX (benzene, toluene and o-xylene) which are the major VOCs and to identify novel biomarkers on immune response to these VOCs exposure in human T lymphocytes, we performed the toxicogenomic study by analyzing of gene expression profiles using 35 k human oligo-microarray. BTX generated specific gene expression patterns in Jurkat cell line. By clustering analysis, we identified some genes as potential markers on immuno-modulating effects of BTX. Four genes of these, HLA-DOA, ITGB2, HMGA2 and 5TAT4 were the most significantly affected by BTX exposure. Thus, this study suggests that these differentially expressed immune genes may play an important role in the pathogenesis on BTX exposure and have significant potential as novel biomarkers of exposure, susceptibility and response to BTC.

Jurkat T 림프구와 U937 단핵구에서 중성지방 처리 시 iNOS를 통한 염증성 사이토카인의 mRNA 발현 증가 (Triglycerides increase mRNA Expression of Pro-inflammatory Cytokines Via the iNOS in Jurkat T lymphocyte and U937 Monocyte Cell Lines)

  • 장정현
    • 한국방사선학회논문지
    • /
    • 제13권1호
    • /
    • pp.133-140
    • /
    • 2019
  • 중성지방(Triglyceride, TG)는 죽상동맥경화증과 같은 혈관의 만성 염증성 병변을 유발하는 인자 중 하나이다. 종양괴사인자-알파 ($TNF-{\alpha}$), 인터루킨-1 베터 ($IL-1{\beta}$)와 같은 염증성 사이토카인은 염증 질환의 주요 요인으로 염증 부위에 T 림프구, 단핵구등의 면역 세포의 침윤을 유도하거나 세포 및 조직 괴사를 일으킴으로써 질병을 더욱 악화시킨다. 본 연구에서는 혈관 염증에 관여하는 Jurkat T 림프구와 U937 단핵구에 TG를 처리하였을 때 $TNF-{\alpha}$$IL-1{\beta}$의 발현에 미치는 영향을 조사하고자 했다. Jurkat T 세포에서 TG에 의해 $TNF-{\alpha}$의 mRNA 발현이 증가하였고, U937 단핵구에서는 TG에 의해 $TNF-{\alpha}$$IL-1{\beta}$ 모두 mRNA 발현이 증가하였다. 또한 유도성 산화질소합성효소(inducible nitric oxide synthase, iNOS)가 TG에 의한 $TNF-{\alpha}$$IL-1{\beta}$의 발현 증가에 관여하는지 확인하기 위해 iNOS 억제제인 W1400을 세포에 전처리하여 iNOS의 활성을 차단하였다. 그 결과, W1400을 전처리한 세포에서는 TG에 의한 $TNF-{\alpha}$$IL-1{\beta}$ mRNA 양이 대조군과 유사하게 낮은 수준으로 관찰되었다. 이는 혈관 내 TG의 증가가 T 림프구와 단핵구를 자극하여 iNOS 신호를 거쳐 염증성 사이토카인을 분비시키고 혈관염증질환을 발생하는데 관여하는 것을 확인시켜주었다. 결론적으로, 중성지방이 염증성 병변을 악화시키는데 있어 iNOS의 활성이 사이토카인 분비 등에 작용하며 병변을 더욱 악화시키는데 기여할 수 있다. 반면, iNOS 발현을 조절하여 고지혈증 환자의 치료에 유효한 표적 물질로 이용될 가능성이 있다고 사료된다.

Genotoxicity and Identification of Differentially Expressed Genes of Formaldehyde in human Jurkat Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제1권4호
    • /
    • pp.230-236
    • /
    • 2005
  • Formaldehyde is a common environmental contaminant found in tobacco smoke, paint, garments, diesel and exhaust, and medical and industrial products. Formaldehyde has been considered to be potentially carcinogenic, making it a subject of major environmental concern. However, only a little information on the mechanism of immunological sensitization and asthma by this compound has been known. So, we performed with Jurkat cell line, a human T lymphocyte, to assess the induction of DNA damage and to identify the DEGs related to immune response or toxicity by formaldehyde. In this study, we investigated the induction of DNA single strand breaks by formaldehyde using single cell gel electrophoresis assay (comet assay). And we compared gene expression between control and formaldehyde treatment to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based $GeneFishing^{TM}$ method. The cytotoxicity ($IC_{30}$) of formaldehyde was determined above the 0.65 mM in Jurkat cell in 48 h treatment. Based on the $IC_{30}$ value from cytotoxicity test, we performed the comet assay in this concentration. From these results, 0.65 mM of formaldehyde was not revealed significant DNA damages in the absence of S-9 metabolic activation system. And the one differentially expressed gene (DEG) of formaldehyde was identified to zinc finger protein 292 using $GeneFishing^{TM}$ method. Through further investigation, we will identify more meaningful and useful DEGs on formaldehyde, and then can get the information on the associated mechanism and pathway with immune response or other toxicity by formaldehyde exposure.

검정콩 안토시아닌의 항산화 및 암세포독성 (Antioxidant Activity and Cytotoxicity on Human Cancer Cells of Anthocyanin Extracted from Black Soybean)

  • 김용호;김동선;우성식;김현희;이영상;김희선;고광오;이석기
    • 한국작물학회지
    • /
    • 제53권4호
    • /
    • pp.407-412
    • /
    • 2008
  • 검정콩 안토시아닌의 항산화력과 암세포독성을 분석한 결과는 다음과 같다. 1. 안토시아닌 함량은 일품검정콩이 공시재료 중 가장 높게 나타났으며, 특히 C3G 함량은 타 계통보다 2배 이상 높았다. 2. 안토시아닌을 분획한 후 각각의 pigment로 항산화 효과를 분석한 결과 TEAC 법과 DPPH법 모두 C3G, D3G, 및 Pt3G의 효과가 인정되었으며, C3G와 D3G의 항산화력이 높게 나타났다. 일품검정콩과 재래속청간 품종 비교에서는 일품검정콩이 3가지 분획 모두 재래속청 보다 항산화 효과가 높았으며, 이는 TEAC 법과 DPPH법 공히 같은 경향이었다. 3. 인간 암세포인 Jurkat T 세포와 MCF-7 세포에 안토시 아닌 개별색소(C3G, D3G 및 Pt3G)를 $100{\sim}500\;{\mu}g/mL$ 농도로 처리하고 암세포에 대한 독성을 관찰한 결과, 3가지 시험물질 모두 두 가지 암 세포에서 세포독성 효과를 나타내었다. 이와 같은 결과는 검정콩 안토시아닌이 여러 가지 생리활성 효과를 가지고 있음을 나타내는 결과로 판단된다.

20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway

  • Xia, Ting;Zhang, Jin;Zhou, Chuanxin;Li, Yu;Duan, Wenhui;Zhang, Bo;Wang, Min;Fang, Jianpei
    • Journal of Ginseng Research
    • /
    • 제44권5호
    • /
    • pp.725-737
    • /
    • 2020
  • Background: T-cell acute lymphoblastic leukemia (T-ALL) is a kind of aggressive hematological cancer, and the PI3K/Akt/mTOR signaling pathway is activated in most patients with T-ALL and responsible for poor prognosis. 20(S)-Ginsenoside Rh2 (20(S)-GRh2) is a major active compound extracted from ginseng, which exhibits anti-cancer effects. However, the underlying anticancer mechanisms of 20(S)-GRh2 targeting the PI3K/Akt/mTOR pathway in T-ALL have not been explored. Methods: Cell growth and cell cycle were determined to investigate the effect of 20(S)-GRh2 on ALL cells. PI3K/Akt/mTOR pathway-related proteins were detected in 20(S)-GRh2-treated Jurkat cells by immunoblotting. Antitumor effect of 20(S)-GRh2 against T-ALL was investigated in xenograft mice. The mechanisms of 20(S)-GRh2 against T-ALL were examined by cell proliferation, apoptosis, and autophagy. Results: In the present study, the results showed that 20(S)-GRh2 decreased cell growth and arrested cell cycle at the G1 phase in ALL cells. 20(S)-GRh2 induced apoptosis through enhancing reactive oxygen species generation and upregulating apoptosis-related proteins. 20(S)-GRh2 significantly elevated the levels of pEGFP-LC3 and autophagy-related proteins in Jurkat cells. Furthermore, the PI3K/Akt/mTOR signaling pathway was effectively blocked by 20(S)-GRh2. 20(S)-GRh2 suppressed cell proliferation and promoted apoptosis and autophagy by suppressing the PI3K/Akt/mTOR pathway in Jurkat cells. Finally, 20(S)-GRh2 alleviated symptoms of leukemia and reduced the number of white blood cells and CD3 staining in the spleen of xenograft mice, indicating antitumor effects against T-ALL in vivo. Conclusion: These findings indicate that 20(S)-GRh2 exhibits beneficial effects against T-ALL through the PI3K/Akt/mTOR pathway and could be a natural product of novel target for T-ALL therapy.

사백산의 면역조절 효과 (Effect of Sabaek-san on the Immunomodulatory Action)

  • 조성연;이동주;정한솔;이상룡;이광규
    • 동의생리병리학회지
    • /
    • 제18권1호
    • /
    • pp.63-68
    • /
    • 2004
  • The purpose of this research was to investigate the effect of Sabaek-San(SBS) on the activity of immune cell and leukemia cell. The addition of SBS(1 ㎍/㎖) enhanced the proliferation of cultured-splenocytes and thymocytes. And also, administration of SBS(250, 500 mg/kg) accelerated subpopulation of splenic T lymphocytes in BALB/c mice. Administration of SBS eminently enhanced the production of IFN-γ, and IL-4. The treatment of high dose of SBS inhibit the proliferation of Jurkat cells and dose-dependently increased the apoptosis of cultured-Jurkat leukemia cells. These results suggest that SBS have a cell mediated immuno-regulatory effect.

Antioxidative and Probiotic Properties of Lactobacillus gasseri NLRI-312 Isolated from Korean Infant Feces

  • Kim, H.S.;Jeong, S.G.;Ham, J.S.;Chae, H.S.;Lee, J.M.;Ahn, C.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권9호
    • /
    • pp.1335-1341
    • /
    • 2006
  • We selected a Lactobacillus spp. from Korean healthy infant feces based upon their antioxidant activity. This strain was identified as Lactobacillus gasseri by 16S rDNA sequencing, and named Lactobacillus gasseri NLRI-312. In the present study, we investigate the protective effect of this strain on the $H_2O_2$ induced damage to cellular membrane lipid and DNA in Jurkat cells. To estimate the extent of cellular lipid peroxidation inhibition, MDA (malondialdehyde) was measured, and DNA damage was tested by the comet assay. We also examined probiotic properties including tolerance to acid and bile, antibiotic resistance. From the results obtained, the supplementation of Jurkat cells with NLRI-312 decreased in DNA damage, while no effect was shown on MDA decrease. In probiotic properties, this strain was resistance to both acid and bile, showed considerably higher survival when incubated in pH 2 or 1% bile salts (w/v). We concluded that the NLRI-312 could be used as potential probiotic bacteria, with the effect of reducing DNA damage induced by $H_2O_2$.

The Cytotoxic and Anti-proliferative Effects of 3-Hydrogenkwadaphnin in K562 and Jurkat Cells Is Reduced by Guanosine

  • Moosavi, Mohammad Amin;Yazdanparast, Razieh;Sanati, Mohammad Hasan
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.391-398
    • /
    • 2005
  • 3-hydrogenwadaphnin (3-HK) is a new daphnane-type diterpene ester isolated from Dendrostellera lessertii with strong anti-tumoral activity in animal models and in cultures. Here, prolonged effects of this new agent on proliferation and viability of several different cancerous cell lines were evaluated. Using [$^3H$]thymidine incorporation, it was found that the drug inhibited cell proliferation and induced G1/S cell cycle arrest in leukemic cells 24 h after a single dose treatment. The cell viability of Jurkat cells was also decreased by almost 10%, 31% and 40% after a single dose treatment (7.5 nM) at 24, 48 and 72 h, respectively. The drug-treated cells were stained with acridine orange/ethidium bromide to document the chromatin condensation and DNA fragmentation. These observations were further confirmed by detection of DNA laddering pattern in the agarose gel electrophoresis of the extracted DNA from the treated cells. Treatment of K562 cells with the drug at 7.5, 15 and 30 nM caused apoptosis in 25%, 45% and 65% of the cells, respectively. Exogenous addition of $25-50\;{\mu}M$ guanosine and/or deoxyguanosine to the cell culture of the drug-treated cells restored DNA synthesis, released cell arrest at G1/S checkpoint and decreased the apoptotic cell death caused by the drug. These observations were not made using adenosine. However, the drug effects on K562 cells were potentiated by hypoxanthine. Based on these observations, perturbation of GTP metabolism is considered as one of the main reasons for apoptotic cell death by 3-HK.

Detection of Mitotic Centromere-Associated Kinesin (MCAK) During Cell-Cycle Progression of Human Jurkat T Cells Using Polyclonal Antibody Raised Against Its N- Terminal Region Overexpressed in E. coli

  • Jun, Do-Youn;Rue, Seok-Woo;Kim, Byung-Woo;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.912-918
    • /
    • 2003
  • Mitotic centromere-associated kinesin (MCAK), which is a novel kinesin with a central motor domain, is believed to playa role in mitotic segregation of chromosome during the M phase of the cell cycle. In the present study, it is shown that a rabbit polyclonal antibody has been produced using the N-terminal region (187 aa) of human MCAK expressed in E. coli as the antigen. To express the N-terminal region in E. coli, the MCAK cDNA fragment encoding N-terminal 187 aa was obtained by PCR and was then inserted into the pET 3d expression vector. Molecular mass of the N-terminal region overexpressed in the presence of IPTG was 23.2 kDa on SDS-PAGE, and the protein was insoluble and mainly localized in the inclusion body that could be easily purified from the other cellular proteins. The N-terminal region was purified by electro-elution from the gel after the inclusion body was resolved on the SDS-PAGE. The antiserum obtained after tertiary immunization with the purified protein specifically recognized HsMCAK when subjected to Western blot analysis, and showed a fluctuation of the protein level during the cell cycle of human Jurkat T cells. Synchronization of the cell-cycle progression required for recovery of cells at a specific stage of the cell cycle was performed by either hydroxyurea or nocadazole, and subsequent release from each blocking at 2, 4, and 7 h. Northern and Western analyses revealed that both mRNA and protein of HsMCAK reached a maximum level in the S phase and declined to a basal level in the G1 phase. These results indicate that a polyclonal antibody raised against the N-terminal region (187 aa) of HsMCAK, overexpressed in E. coli, specifically detects HsMCAK (81 kDa), and it can analyze the differential expression of HsMCAK protein during the cell cycle.