• Title/Summary/Keyword: Jurassic granite

Search Result 195, Processing Time 0.021 seconds

Tectonic Implication of 40Ar/39Ar Hornblende and Muscovite Ages for Granitic Rocks in Southwestern Region of Ogcheon Belt, South Korea (옥천대 남서부지역에 분포하는 화강암류의$^{40}Ar/^{39}Ar$ 각섬석-백운모 연령에 대한 지구조적 의미)

  • 김용준;박재봉;박영석
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 1998
  • $^{40}Ar/^{39}Ar$ analytical data of hornblende and muscovite separates from granitic rocks in southwestern region of Ogcheon belt shows fellowing tectonic implication, $^{40}Ar/^{39}Ar$ data of 5 samples yield apparent age spectra and $^{37}Ar_{ca}/^{39}Ar_k$ and $^{38}Ar_{CI}/^{39}Ar_k$ plateaus for more than 60% of the $^{39}Ar$ release. Except for HN-100, the $^{36}Ar/^{40}Ar$ versus $^{39}Ar/^{40}Ar$ corelalation diagrams indicate the presence of one distint line. Muscovite of sample PKJ-44 yield flate apparent age plateau for > 60% of the $^{39}Ar_k$ release. In the high temperature steps, the $^{37}Ar_{ca}/^{39}Ar_k$ values are irregular with a correlative increase in $^{38}Ar_{CI}/^{39}Ar_k$, suggesting some Ca and CI rich phase, tapped between the silicate sheet is being argon degassed. The $^{40}Ar/^{39}Ar$ total gas age and the high temperature age of HN-100 is 918.2 Ma and 1360 Ma, respectively. The former affectted by recystallized age of Daebo Orogeny, and the latter indicated age of hornblende closure temperature for cooling stage of amphibole xenolith in granite gneiss. Three rock types of Kwangju granites show about 165 Ma hornblende and muscovite ages with some degassed argon at low temperature steps. These ages of 4 samples indicate also recrystallized age by Daebo Orogeny. In $^{40}Ar/^{39}Ar$ mineral age, Rb/Sr whole age and K/Ar mineral age, discordant ages of southwestern region of Ogcheon belt suggesting cooling rates approaching 3~4$^{\circ}C$/m. y. Such slow cooling rates can be produced by uplift rate of 100m/m.y. or slightly slower than isothem-migration rate derived from the hornblende samples. We conclude that the strongest Orogeny and igneous activity of southwestern region of Ogcheon belt are middle proterozoic era (about 1360 Ma) and middle Jurassic period (about 165 Ma).

  • PDF

Geochemical Characteristics and Quaternary Environmental Change of Unconsolidated Sediments from the Seokgwan-dong Paleolithic Site in Seoul, Korea (서울 석관동 유적의 미고결 퇴적층의 지구화학적 특성 및 제4기 지표환경변화)

  • Lee, Hyo-Min;Lee, Jin-Young;Kim, Ju-Yong;Hong, Sei-Sun;Park, Jun-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.373-388
    • /
    • 2016
  • To understand human activity in the past, the information about past environmental change including geomorphological and climatic conditions is essential and this can be traced by using age dating and geochemical analysis of sediments from the prehistoric sites. The sedimentary sequence of Seokgwan-dong Paleolithic Site located in Seoul was 5m long unconsolidated sediments and consists of lower part bedrock weathering sediments, slope deposits and upper-part fluvial deposits. In this study, upper part sediments were used to reconstruct past environmental change through age dating and various physical and chemical analyses including grain size, magnetic susceptibility and mineral and elements. The fluvial sediments can be divided into 4 units including three organic layers. Grain size analysis results showed that the sediments were very poorly sorted with fining upward features. Magnetic susceptibility was relatively high in the organic layers, indicating environmental changes causing mineral composition change at that times. The mineral and major element composition are similar to Jurassic biotite granite which mainly consists of quartz, K-feldspar, biotite and muscovite. The radiocarbon age of $14,240{\pm}80yr$ BP was obtained from the lower most organic layer of Unit III(O), suggesting that the fluvial sediments formed at least from the early stage of deglacial period after the end of Last Glacial Maximum. Subsequent wet and warm climates and resultant fluvial process including slope sedimentation during the Holocene may have been responsible for the sedimentary sequence in Seokgwan-dong paleolithic site and surrounding area. The observed organic layers suggests frequent wetland occurrence combined with natural levee changes in this area.

Mineralogy and Mineral-chemistry of REE Minerals Occurring at Mountain Eorae, Chungju (충주 어래산 일대에서 산출하는 희토류 광물의 광물학적 및 광물화학적 특성)

  • You, Byoung-Woon;Lee, Gill Jae;Koh, Sang Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.643-659
    • /
    • 2012
  • The Chungju Fe-REE deposit is located in the Kyemyeongsan Formation of the Ogcheon Group. The Kyemyeongsan Formation includes meta-volcanic rocks and pegmatite hosted REE deposit which show different kind of REE-containing minerals. The meta-volcanic rocks hosted REE deposits' main REE minerals are allanite, zircon, apatite, and sphene, whereas the pegmatite hosted REE deposits is mainly composed of fergusonite, and karnasurtite, zircon, thorite. The meta-volcanic rock hosted major REE mineral is allanite as the form of aggregation and contains 23.89-29.19 wt% TREO (Total Rare Earth Oxide), 4.71-9.92 wt% $La_2O_3$, 11.30-14.33 wt% $Ce_2O_3$, 0.11-0.29 wt% $Y_2O_3$, 0.15-0.94 wt% $ThO_2$, as a formula of (Ca, Y, REE, Th)$_{2.095}$(Mg, Al, Ti, Mn, $Fe^{3+})_{2.770}(SiO_4)_{2.975}(OH)$. Accompanying REE in a coupled substitution for $Ca^{2+}$ (M1 site) and $Al^{3+}-Fe^{2+}$ (M2 site) leads to a large chemical variety. Due to the allanite's high contents of Fe, it belongs to Ferrialanite. The pegmatite hosted deposit's domi-nant REE mineral is fergusonite as prismatic or subhedral grains associated with zircon, fluorite and karnasurtite. Geochemical composition of the fergusonite($YNbO_4$) suggests substitution of Y-REE and Y-Th in A-site, and Nb-Ta-Ti in B-site, furthermore the proportion of $Y_2O_3$ and $Nb_2O_5$ is oddly 1:1.5 comparing to the ideal ratio 1:1 and Nb is higher than Y, also A-site Y actively substitutes with REE. Karnasurtite in pegmatite variously ranges 9.16-22.88 wt% $Ce_2O_3$, 2.15-9.16 wt% and $La_2O_3$, 0.44-10.8 wt% $ThO_2$, as a calculated formula (Y, REE, Th, K, Na, Ca)$_{1.478}(Ti, Nb)_{1.304}$(Mg, Al, Mn, $Fe^{3+})_{0.988}$(Si, P)$_{1.431}O_7(OH)_4{\cdot}3H_2O$. Firstly the 870-860 Ma is the initial age of the supercontinent Rhodinia dispersal and subsequent A-1 type volcanism, which contains Fe, REE, and HFS(High Field Strength elements; Nb, Zr, Y etc.) elements in Fe-rich meta-volcanic rocks dominant Kyemyeongsan Formation, might mineralized allanite. Another synthesis is that regional metamorphism at late Paleozoic 300-280 Ma(Cho et al., 2002) might cause allanite mineralization. Also pegmatite REE mineralization highly related to the granite intrusion over the Chungju area in Jurassic(190 Ma; Koh et al., 2012). Otherwise above all, A-1 type volcanism at the same time of the Kyemyeongsan Formation development, regional metamorphism and pegmatite, might have caused REE mineralization. Although REE ore bodies display a close spatial association, each ore bodies display temporal distinction, different mineral assemblage and environment of ore formation.

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit (운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.

Evaluation for Rock Cleavage Using Distributional Characteristics of Microcracks and Brazilian Tensile Strengths (미세균열과 압열인장강도의 분포 특성을 이용한 결의 평가)

  • Park, Deok-Won
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.99-114
    • /
    • 2020
  • The characteristics of the Brazilian tensile strengths(σt) parallel to the rock cleavages in Jurassic granite from Geochang were analysed. The evaluation for the six directions of rock cleavages was performed using the parameter values on microcrack length and the above strength. The strength values of the five test specimens belonging to each direction were classified into five groups. The strength values of these five groups increase in order of group A < B < C < D < E. The close dependence between the above microcrack and strength was derived. The analysis results of this study are summarized as follows. First, the chart showing the variation and characteristics of strength among the three rock cleavages were made. In the above chart, the strength values of six directions belonging to each group were arranged in order of rift(R1 and R2), grain(G1 and G2) and hardway(H1 and H2). The strength distribution lines of the five groups concentrate in the direction of R1. And the widths among the above five lines indicating strength difference(Δσt) are the most narrowest in R1 direction. From the related chart, the variation characteristics among the two directions forming each rock cleavage were derived. G2(2)-test specimen shows higher value and lower value of the difference in strength compared to the case of G1(1)-test specimen. These kinds of phenomena are the same as the case between the test specimen H2(2) and H1(1). The strength characteristics of the above test specimens (2) suggest lower microcrack density value and higher degree of uniformity in the distribution of microcracks arrayed parallel to the loading direction compared to those of test specimens (1). The six strength values belonging to each group were arranged in increasing order in the above chart. The strength values of the test specimens belonging to both group D and E appear in order of R1 < R2 < G1 < H1 < G2 < H2. Therefore, the strength values of group D and E can be indicator values for evaluating the six directions of rock cleavages. Second, the correlation chart between slope angle(θ) and strength difference(Δσt) were made. The values of the above two parameters were obtained from the five strength distribution lines connecting between the two directions. From the chart related to rift plane(G1-H1, R'), grain plane(R1-H2, G') and hardway plane(R2-G2, H'), the slope values of linear functions increase in order of R'(0.391) < G'(0.470) < H'(0.485). Among three planes, the charts related to hardway plane show the highest distribution density among the five groups. From the related chart for rift(R1-R2, R), grain(G1-G2, G) and hardway(H1-H2, H), the slope values of linear functions increase in order of rift(0.407) < hardway(0.453) < grain(0.460). Among three rock cleavages, the charts related to rift show the highest frequency of groups belonging to the lower region. Taken together, the width of distribution of the slope angle among the three planes and three rock cleavages increase in order of H' < G < R' < R < G' < H. Third, the correlation analysis among the parameters related to microcrack length and the tensile strengths was performed. These parameters may include frequency(N), total length(Lt), mean length(Lm), median length(Lmed) and density(ρ). The correlation charts among individual parameters on the above microcrack(X) and corresponding five levels of tensile strengths for the five groups(Y) were made. From the five kinds of correlation charts, the values of correlation coefficients(R2) increase along with the five levels of strengths. The mean values of the five correlation coefficients from each chart increase in order of 0.22(N) < 0.34(Lt) < 0.38(ρ) < 0.57(Lmed) < 0.58(Lm). Fourth, the correlation chart among the corresponding maximum strength for group E(X) and the above five parameters(Y) were made. From the related chart, the values of correlation coefficient increase in order of 0.61(N) < 0.81(Lt) < 0.87(ρ) < 0.93(Lm) < 0.96(Lmed). The two parameters that have the highest correlations are median length with maximum strength. Through the above correlation analysis between microcrack and strength, the credibility for the results from this study can be enhanced.