• 제목/요약/키워드: Junction temperature prediction

검색결과 8건 처리시간 0.022초

Junction Temperature Prediction of IGBT Power Module Based on BP Neural Network

  • Wu, Junke;Zhou, Luowei;Du, Xiong;Sun, Pengju
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.970-977
    • /
    • 2014
  • In this paper, the artificial neural network is used to predict the junction temperature of the IGBT power module, by measuring the temperature sensitive electrical parameters (TSEP) of the module. An experiment circuit is built to measure saturation voltage drop and collector current under different temperature. In order to solve the nonlinear problem of TSEP approach as a junction temperature evaluation method, a Back Propagation (BP) neural network prediction model is established by using the Matlab. With the advantages of non-contact, high sensitivity, and without package open, the proposed method is also potentially promising for on-line junction temperature measurement. The Matlab simulation results show that BP neural network gives a more accuracy results, compared with the method of polynomial fitting.

TOWARD AN ACCURATE APPROACH FOR THE PREDICTION OF THE FLOW IN A T-JUNCTION: URANS

  • Merzari, E.;Khakim, A.;Ninokata, H.;Baglietto, E.
    • Nuclear Engineering and Technology
    • /
    • 제41권9호
    • /
    • pp.1191-1204
    • /
    • 2009
  • In this study, a CFD methodology is employed to address the problem of the prediction of the flow in a T-junction. An Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been selected for its low computational cost. Moreover, Unsteady Reynolds Navier-Stokes methodologies do not need complex boundary formulations for the inlet and the outlet such as those required when using Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS). The results are compared with experimental data and an LES calculation. In the past, URANS has been tried on T-junctions with mixed results. The biggest limit observed was the underestimation of the oscillatory behavior of the temperature. In the present work, we propose a comprehensive approach able to correctly reproduce the root mean square (RMS) of the temperature directly downstream of the T-junction for cases where buoyancy is not present.

고전력 전자소자에서 열전생성기의 생성효율과 열적성능 (Generation Efficiency and Thermal Performance of a Thermoelectric Generator with a High Power Electronic Component)

  • 김경준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.51-56
    • /
    • 2012
  • 본 논문은 고파워 전자소자의 폐열로부터 에너지 수확을 목적으로 하는 열전생성기의 생성효율과 열적 성능에 대하여 논한다. 열경계저항을 포함하는 열전모델이 적용되어 생성효율과 고전력 전자소자의 junction 온도를 예측하였고 그 결과는 실험치로 검증되어진다. 검증결과는 예측치와 계측치의 오차가 작음을 보인다. 검증후 열전모델은 다양한 로드저항과 열원의 열율에서 생성효율, 열전생성기 양면의 온도차, 소자의 junction 온도를 예측한다. 본 연구는 로드저항이 생성효율, 열전생성기 양면의 온도차, junction 온도에 미치는 영향에 대해서도 탐구한다.

Numerical Prediction of Solder Fatigue Life in a High Power IGBT Module Using Ribbon Bonding

  • Suh, Il-Woong;Jung, Hoon-Sun;Lee, Young-Ho;Choa, Sung-Hoon
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1843-1850
    • /
    • 2016
  • This study focused on predicting the fatigue life of an insulated gate bipolar transistor (IGBT) power module for electric locomotives. The effects of different wiring technologies, including aluminum wires, copper wires, aluminum ribbons, and copper ribbons, on solder fatigue life were investigated to meet the high power requirement of the IGBT module. The module's temperature distribution and solder fatigue behavior were investigated through coupled electro-thermo-mechanical analysis based on the finite element method. The ribbons attained a chip junction temperature that was 30℃ lower than that attained with conventional round wires. The ribbons also exhibited a lower plastic strain in comparison with the wires. However, the difference in plastic strain and junction temperature among the different ribbon materials was relatively small. The ribbons also exhibited different crack propagation behaviors relative to the wires. For the wires, the cracks initiated at the outmost edge of the solder, whereas for the ribbons, the cracks grew in the solder layer beneath the ribbons. Comparison of fatigue failure areas indicated that ribbon bonding technology could substantially enhance the fatigue life of IGBT modules and be a potential candidate for high power modules.

고속도강공구의 플랭크면 절삭온도 예측에 관한 연구 (A Study on Prediction of Cutting Temperature in Flank Face ar High Speed Steel)

  • 전태옥;배춘익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권1호
    • /
    • pp.45-53
    • /
    • 1995
  • Temperature distribution on flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher because of the difference of the friction velocity on each face of the tool.

  • PDF

2차원 선삭시 유한요소법에 의한 고속도강공구의 절삭온도 예측 (Prediction of Cutting Temperature at High Speed Steel in Orthogonal Turning based on Finite Element Method)

  • 전태옥;배춘익
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.102-112
    • /
    • 1995
  • Temperature distribution on the rake face and flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on both the rake face and flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher than it on the top rake face of the tool because of the difference of the friction velocity on each face of the tool.

  • PDF

Modeling of Process Plasma Using a Radial Basis Function Network: A Cases Study

  • Kim, Byungwhan;Sungjin Rark
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권4호
    • /
    • pp.268-273
    • /
    • 2000
  • Plasma models are crucial to equipment design and process optimization. A radial basis function network(RBFN) in con-junction with statistical experimental design has been used to model a process plasma. A 2$^4$ full factorial experiment was employed to characterized a hemispherical inductively coupled plasma(HICP) in characterizing HICP, the factors that were varied in the design include source power, pressure, position of shuck holder, and Cl$_2$ flow rate. Using a Langmuir probe, plasma attributes were collected, which include typical electron density, electron temperature. and plasma potential as well as their spatial uniformity. Root mean-squared prediction errors of RBEN are 0.409(10(sup)12/㎤), 0.277(eV), and 0.699(V), for electron density, electron temperature, and Plasma potential, respectively. For spatial uniformity data, they are 2.623(10(sup)12/㎤), 5.704(eV) and 3.481(V), for electron density, electron temperature, and plasma potential, respectively. Comparisons with generalized regression neural network(GRNN) revealed an improved prediction accuracy of RBFN as well as a comparable performance between GRNN and statistical response surface model. Both RBEN and GRNN, however, experienced difficulties in generalizing training data with smaller standard deviation.

  • PDF

탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로- (Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell-)

  • 조진구
    • 한국농공학회지
    • /
    • 제39권3호
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF