DOI QR코드

DOI QR Code

Generation Efficiency and Thermal Performance of a Thermoelectric Generator with a High Power Electronic Component

고전력 전자소자에서 열전생성기의 생성효율과 열적성능

  • 김경준 (부경대학교 기계자동차공학과)
  • Received : 2011.11.02
  • Accepted : 2011.12.21
  • Published : 2012.01.31

Abstract

This paper reports the generation efficiency and the thermal performance of a thermoelectric generator (TEG) harvesting energy from the waste heat of high power electronic components. A thermoelectric (TE) model containing thermal boundary resistances is used to predict generation efficiency and junction temperature of a high power electronic component. The predicted results are verified with measured values, and the discrepancy between prediction and measurement is seen to be moderate. The verified TE model predicts generation efficiencies, junction temperatures of the component, and temperature differences across a TEG at various source heat flows associated with various electrical load resistances. This study explores effects of the load resistance on the generation efficiency, the temperature difference across a TEG, and the junction temperature.

본 논문은 고파워 전자소자의 폐열로부터 에너지 수확을 목적으로 하는 열전생성기의 생성효율과 열적 성능에 대하여 논한다. 열경계저항을 포함하는 열전모델이 적용되어 생성효율과 고전력 전자소자의 junction 온도를 예측하였고 그 결과는 실험치로 검증되어진다. 검증결과는 예측치와 계측치의 오차가 작음을 보인다. 검증후 열전모델은 다양한 로드저항과 열원의 열율에서 생성효율, 열전생성기 양면의 온도차, 소자의 junction 온도를 예측한다. 본 연구는 로드저항이 생성효율, 열전생성기 양면의 온도차, junction 온도에 미치는 영향에 대해서도 탐구한다.

Keywords

References

  1. D. M. Rowe, CRC Handbook of Thermoelectrics, CRC, Boca Raton, USA, 1995.
  2. K. Ikoma, M. Munekiyo, K. Furuya et al., "Thermoelectric module and generator for gasoline engine vehicles", Proceedings of the 17th Int. Conf. on Thermoelectrics, Nagoya, Japan, pp. 464-467, 1998.
  3. T. Kajikawa, "Status and future prospects on the development of thermoelectric power generation systems utilizing combustion heat from municipal solid waste", Proceedings of the 16th Int. Conf. on Thermoelectrics, Dresden, Germany, pp. 28-36, 1997.
  4. G. L. Solbrekken, K. Yazawa, and A. Bar-Cohen, "Heat driven cooling of portable electronics using thermoelectric technology", IEEE Trans. Adv. Packaging, vol. 31, pp. 429-437, 2008. https://doi.org/10.1109/TADVP.2008.920356
  5. K. Yazawa, G. L. Solbrekken, and A. Bar-Cohen, "Thermoelectric powered convective cooling of microprocessors", IEEE Trans. Adv. Packaging, vol. 28, pp. 231-239, 2005. https://doi.org/10.1109/TADVP.2005.846854
  6. A. I. Hochbaum, R. Chen, R. D. Delgado et al., "Enhanced thermoelectric performance of rough silicon nanowires", Nature, vol. 451 (7175), pp. 163-167, 2008. https://doi.org/10.1038/nature06381
  7. K. F. Hsu, S. Loo, F. Guo et al., "Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit", Science, vol.303 (5659), pp. 818-821, 2004. https://doi.org/10.1126/science.1092963
  8. K.J. Kim, F. Cottone, S. Goyal et al., "Energy scavenging for energy efficiency in networks and applications", Bell Labs Tech. J. vol.15, no.2, pp. 7-30, 2010. https://doi.org/10.1002/bltj.20438
  9. K.J. Kim, "Thermoelectric energy recovery from power amplifier transistors", Proceedings of the 14th Int. Heat Transfer Conf., Washington D.C., U.S.A, 22892, 2010.
  10. Product specification sheets, Marlow Industries Inc., 2009.

Cited by

  1. Computational Investigation of the Thermal Performances of Polymer Heat Sinks Passively-Cooled by Seawater for Thermoelectric Waste Heat Recovery vol.39, pp.4, 2015, https://doi.org/10.5916/jkosme.2015.39.4.432