• 제목/요약/키워드: Junction properties

검색결과 370건 처리시간 0.046초

Local Variation of Magnetic Parameters of the Free Layer in TMR Junctions

  • Kim, Cheol-Gi;Shoyama, Toshihiro;Tsunoda, Masakiyo;Takahashil, Migaku;Lee, Tae-Hyo;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • 제7권3호
    • /
    • pp.72-79
    • /
    • 2002
  • Local M-H loops have been measured on the free layer of a tunneling magnetoresistance (TMR) junction using the magneto-optical Kerr effect (MOKE) system, with an optical beam size of about 2 $\mu$m diameter. Tunnel junctions were deposited using the DC magnetron sputtering method in a chamber with a base pressure of 3$\times$10$^{-9}$ Torr. The relatively irregular variations of coercive force H$_c$(∼17.5 Oe) and unidirectional anisotropy field H$_{ua}$(∼7.5 Oe) in the as-deposited sample are revealed. After $200{^{\circ}C}$ annealing, He decreases to 15 Oe but H$_{ua}$ increases to 20 Oe with smooth local variations. Two-dimensional plots of H$_c$ and H$_{ua}$ show the symmetric saddle shapes with their axes aligned with the pinned layer, irrespective of the annealing field angle. This is thought to be caused by geometric effects during deposition, together with a minor annealing effect. In addition, the variation of root mean square (RMS) surface roughness reveals it to be symmetric with respect to the center of the pinned-layer axis, with the roughness of 2.5 $\AA$ near the edge and 5.8 $\AA$ at the junction center. Comparison of surface roughness with the variation of H$_{ua}$ suggests that the H$_{ua}$ variation of the free layer is well described by dipole interactions related to surface roughness. As a whole, the reversal magnetization is not uniform over the entire junction area and the macroscopic properties are governed by the average sum of local distributions.

한국 표준형 원전의 POSRV 하부 배관 유동해석 (Flow Analysis of POSRV Subsystem of Standard Korean Nuclear Reactor)

  • 권순범;김인구;안형준;이동은;백승철;이병은
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1464-1471
    • /
    • 2003
  • In order to investigate the flows with shock wave in branch, 108$^{\circ}$ elbow and T-junction of the IRWST system of standard Korean nuclear reactor, detail time dependent behaviors of unsteady flow with shock wave, vortex and so on are obtained by numerical method using compressible three-dimensional Navier-Stokes equations. At first, the complex flow including the incident and reflected shock waves, vortex and expansion waves which are generated at the corner of T-junction is calculated by the commercial code of FLUENT6 and is compared with the experimental result to obtain the validation of numerical method. Then the flow fields in above mentioned units are analyzed by numerical method of [mite volume method. In numerical analysis, the distributions of flow properties with the moving of shock wave and the forces acting on the wall of each unit which can be used to calculate the size of supporting structure in future are calculated specially. It is found that the initial shock wave of normal type is re-established its type from an oblique one having the same strength of the initial shock wave at the 4 times hydraulic diameters of downstream from the branch point of each unit. Finally, it is turned out that the maximum force acting on the pipe wall becomes in order of the T-junction, 108$^{\circ}$ elbow and branch in magnitude, respectively.

Investigated properties of Low temperature curing Ag Paste for Silicon Hetero-junction Solar Cell

  • Oh, Donghyun;Jeon, Minhan;Kang, Jiwoon;Shim, Gyeongbae;Park, Cheolmin;Lee, Youngseok;Kim, Hyunhoo;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.160-160
    • /
    • 2016
  • In this study, we applied the low temperature curing Ag paste to replace PVD System. The electrode formation of low temperature curing Ag paste for silicon Hetero-junction solar cells is important for improving device characteristics such as adhesion, contact resistance, fill factor and conversion efficiency. The low temperature curing Ag paste is composed various additives such as solvent, various organic materials, polymer, and binder. it depends on the curing temperature conditions. The adhesion of the low temperature curing Ag paste was decided by scratch test. The specific contact resistance was measured using the transmission line method. All of the Ag electrodes were experimented at various curing temperatures within the temperature range of $160^{\circ}C-240^{\circ}C$, at $20^{\circ}C$ intervals. The curing time was also changed by varying the conditions of 10-50min. In the optimum curing temperature $200^{\circ}C$ and for 20 min, the measured contact resistance is $19.61m{\Omega}cm^2$. Over temperature $240^{\circ}C$, confirmed bad contact characteristic. We obtained photovoltaic parameter of the industrial size such as Fill Factor (FF), current density (Jsc), open-circuit voltage (Voc) and convert efficiency of up to 76.2%, 38.1 mA/cm2, 646 mV and 18.3%, respectively.

  • PDF

마이크로파 여기 프라즈마법으로 제조한 강자성 터널링 접합의 국소전도특성 (Local Current Distribution in a Ferromagnetic Tunnel Junction Fabricated Using Microwave Excited Plasma Method)

  • 윤대식;김철기;김종오
    • 한국자기학회지
    • /
    • 제13권2호
    • /
    • pp.47-52
    • /
    • 2003
  • DC 마그네트론 스파터법과 RLSA(Radial Line Slot Antenna)을 이용한 마이크로파 여기 프라즈마를 이용하여 Ta/Cu/Ta/NiFe/Cu/Mn$_{75}$Ir$_{25}$/ $Co_{70}$Fe$_{30}$/Al-oxide 구조의 접합을 제조한 후, contact-mode AM(Atomic Force Microscope)을 이용하여 Al 산화막의 국소전도 특성의 평가를 수행하였다. AFM 동시전류측정으로부터, 얻어지는 표면상과 전류상은 대응하지 않는다. 국소 전류-전압(I-V)의 측정 결과, 전류상은 절연층의 barrier height의 분포를 나타내고 있다는 것을 알았다.다.다.

SiGe-Si-SiGe 채널구조를 이용한 JFET 시뮬레이션 (Simulation of Junction Field Effect Transistor using SiGe-Si-SiGe Channel Structure)

  • 박병관;양하용;김택성;심규환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.94-94
    • /
    • 2008
  • We have performed simulation for Junction Field Effect Transistor(JFET) using Silvco to improve its electrical properties. The device structure and process conditions of Si-control JFET(Si-JFET) were determined to set its cut off voltage and drain current(at Vg=0V) to -0.5V and $300{\mu}A$, respectively. From electrical property obtained at various implantation energy, dose, and drive-in conditions of p-gate doping, we found that the drive in time of p-type gate was the most determinant factor due to severe diffusion. Therefore we newly designed SiGe-JFET, in which SiGe layer is to epitaxial layers placed above and underneath of the Si-channel. The presence of SiGe layer lessen the p-type dopants (Boron) into the n-type Si channel the phenomenon would be able to enhance the structural consistency of p-n-p junction. The influence of SiGe layer will be discussed in conjunction with boron diffusion and corresponding I-V characteristics in comparison with Si-control JFET.

  • PDF

PN 접합면의 증착조건에 따른 $Cu(In,\;Ga)Se_2$ 박막 태양전지 특성 (Characteristics of $Cu(In,\;Ga)Se_2$ Thin Film So1ar Cells with Deposition Conditions of PN Junction Interface)

  • 김석기;이정철;강기환;윤경훈;박이준;송진수;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.331-334
    • /
    • 2003
  • Photovoltaics is considered as one of the most promising new energy technology, because its energy source is omni present, pollution-free and inexhaustive. It is agreed that these solar cells must be thin film type because thin film process is cost-efficive in the fact that it uses much less raw materials and can be continuous. The defect chalcopyrite material $CuIn_3Se_5$ has been identified as playing an essential role in efficient photovoltaic action in $CuInSe_2$-based devicesm It has been reported to be of n-type conductivity, forming a p-n junction with its p-type counterpart $CuInSe_2$. Because the most efficient cells consist of the $Cu(In,Ga)Se_2$ quarternary, knowledge of some physical properties of the Ga-containing defect chalcopyrite $Cu(In,Ga)_3Se_5$ may help us better understand the junction phenomena in such devices.

  • PDF

비정질 CoFeSiB 자유층을 갖는 자기터널접합의 스위칭 특성 (Switching Characteristics of Magnetic Tunnel Junction with Amorphous CoFeSiB Free Layer)

  • 황재연;이장로
    • 한국자기학회지
    • /
    • 제16권6호
    • /
    • pp.276-278
    • /
    • 2006
  • 스위칭 특성을 향상시키기 위하여 비정질 강자성 CoFeSiB 자유층을 갖는 자기터널접합 (MTJ)의 스위칭 특성을 연구하였다. 자기터널접합의 구조는 $Si/SiO_{2}/Ta$ 45/Ru 9.5/IrMn 10/CoFe 10/CoFe $7/AlO_{x}/CoFeSiB\;(t)/Ru\;60\;(nm)$이다. CoFeSiB는 $560\;emu/cm^{3}$의 낮은 포화자화도와 $2800\;erg/cm^{3}$의 높은 이방성 상수를 가졌다. 이러한 특성이 자기터널접합의 낮은 보자력($H_{c}$)과 높은 자장민감도를 갖게 한다. 이것은 또한 Landau-Lisfschitz-Gilbert 방정식에 근거한 미세자기 전산시뮬레이션을 통하여 submicrometersized elements에서도 확인하였다. CoFeSiB 자유층 두께를 증가함으로서 스위칭 특성은 반자화 자기장의 증가로 인하여 더욱더 나빠졌다.

Thermal Characteristics of the Optimal Design on 20W COB LED Down Light Heat Sink

  • Kwon, Jae-Hyun;Lee, Jun-Myung;Huang, Wei;Park, Keon-Jun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • 제2권2호
    • /
    • pp.19-22
    • /
    • 2013
  • As the demand of the LED for lighting that emits light by p-n junction is increasing, studies on heatproof plate technology is being conducted to minimize the temperature of the LED lighting. As for the temperature of the LED devices, their light emitting efficiency decreases and the maximum lifespan drops down to 1/5. Therefore there are heat dissipation studies going on to minimize the heat. For LED heat dissipation, aluminum heat sink plates are mostly used. For this paper, we designed heat sink that fits residential 20W COB LED Down Light; packaged the heat sink and 20W COB and analyzed and evaluated the thermal properties through a Solidworks flow simulation. We are planning to design the optimal heat sink plate to solve the thermal agglomeration considering TIM(Thermal Interface material).

Tunneling effect due to UV irradiation in organic Cu-Pc/$Bi_2$$Sr_2$Ca$Cu_2$$O_{8+$\delta$}$ tunnel junction

  • Kim, Sunmi;Lee, Kiejin;Deokjoon Cha;Takayuki Ishibashi
    • Progress in Superconductivity
    • /
    • 제4권2호
    • /
    • pp.99-103
    • /
    • 2003
  • We studied the nonequilibrium superconductivity due to tunnel injection of polaronic quasiparticle (QP) from organic photoconductor. The transport properties of an organic copper (II) phthalocyanine (Cu -Pc)/d-wave superconductor were investigated in dark and under ultraviolet (UV) radiation for performance of a novel $high -T_{c}$ superconducting three terminal device. We observed that the injection of polaronic QP from the organic Cu -Pc film into the $Bi_2$S $r_2$$CaCuO_{8+{\delta}}$ film generated a substantially larger nonequilibrium effect as compared to the normal QP injection current. We could increase the current gain by UV excitation of the organic photoconductor injector. The tunneling spectroscopy of a Cu -Pc/BSCCO junction exhibited a small enhancement of the zero bias conductance peak under the W excitation. The above phenomena are of importance in developing optically controlled three terminal superconducting device.e.

  • PDF