• 제목/요약/키워드: Jumping Ring System

검색결과 9건 처리시간 0.009초

점핑링 및 센서 시스템 개발과 동적 신경망 제어기 설계 (The Development of Jumping Ring with Sensor System and Design of Dynamic Neural Controller)

  • 박성욱;권기진;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.540-542
    • /
    • 1999
  • We develop jumping ring system with sensor and control system using dynamic neural networks. Jumping ring, sensor and control system are controlled by 586 PC using Turbo C program. Sensor system is composed of 20 optical sensors and encoder. The control circuits are consisted of thyristor, FET and phase controller. A/D converter and optical sensor acquire real time motion data of the jumping ring system. The information of acquired jumping ring Position is estimated by using dynamic neural networks. Estimated control signals are sent to control circuits and D/A converter to track desired position of the jumping ring system. Experiment results are given to verify that proposed dynamic controller is useful in real jumping ring system.

  • PDF

자기 시스템의 해석과 설계 (Design and Analysis of Electromagnetic System)

  • 박성욱;오진훈;윤시섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.520-522
    • /
    • 2005
  • This paper presents the design and analysis of the electromagnetic system such as jumping ring system. Also, we study the characteristics of dynamics for system with initial parameter. For the propose of system control,, first, we simulate the MATLAB tool solving coupled differential equations with electric parameter, inductance and mutual inductances. Therefore, we design a jumping ring system using design results, implement, and analyze the jumping ring system real situation. For the near time, we present a control process, and compare of real system and software technique.

  • PDF

전자기 시스템의 해석과 설계 (Design and Analysis of An Electromagnetic System)

  • 박승욱;김동훈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권1호
    • /
    • pp.17-19
    • /
    • 2006
  • This paper presents the design of an electromagnetic system such as jumping ring system, and also considers the characteristics of dynamics for system with initial parameter. For the propose of system analysis, the MATLAB tool is to solve coupled differential equations with inductances and mutual inductance. To apply a real electromagnetic system, this paper implements the jumping ring system using design parameters, and analyzes the jumping ring system with proposal step.

교육용 시스템 개발과 실시간 비선형 제어(I) (Development of an Educational System and Real Time Nonlinear Control (I))

  • 박성욱
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권12호
    • /
    • pp.562-570
    • /
    • 2002
  • The Purpose of this paper is to design and manufacture an educational system in order to demonstrate the causes and effects of electromagnetic induction.'rho educational system described in this study is a "jumping ring apparatus". This system demonstrates the principle of electromagnetic induction, a force from AC sources, Lenz's law of repulsion and transformer. The educational system is composed of a jumping ring apparatus, a sensor array, encoder, A/D converter, D/A converter and nonlinear controller. The educational system is controlled by 586 PC using Turbo C program. The sensor array is composed of 20 optical sensors. The nonlinear controller consists of nonlinear control algorithm and control board included SCR, FET and phase controller. The A/D converter is used to show the height of ring position to analog for an education purpose. The control signal calculated from the nonlinear control of algorithm send control board through 8 bit D/A convertor. Experiment results are given to verify that Proposed nonlinear controller is useful in on line control of the educational system.al system.

광센서를 이용한 점핑링의 위치검출과 교육용 시스템 제작 (Detection of Levitated Ring using Photo Sensor and Construct of an Education System)

  • 박성욱
    • 센서학회지
    • /
    • 제11권6호
    • /
    • pp.365-370
    • /
    • 2002
  • 교류 220V에 의해 동작하는 점핑링 장치를 제작하고 광센서를 사용하여 링의 높이정보를 받아 부상한 링의 높이를 실시간으로 검출하고 교육적 효과를 높이기 위해 디지털 높이정보를 아날로그 변환하여 쉽게 높이를 알 수 있도록 하였다. 교육용 시스템을 직접 제작하여 시스템을 모형화하여 제어신호를 구하고 제어 프로그램에 의해 원하는 높이로 링을 부상할 수 있도록 하였다. 본 논문은 광센서를 사용하여 링의 위치를 실시간으로 검출하였고 광센서의 배열과 높이 정보를 발광다이오드 5개로 디지털 값을 보여주었고, D/A변환하여 교육용 시스템을 제작하여 A/D 변환기를 통해 데이터 신호처리 하였다. 교육용 시스템을 모형 화하여 원하는 링의 높이를 실시간으로 제어 할 수 있게 하였다.

광 센서를 이용한 교육용 시스템 개발과 제어 (Development of Education System Using Photo sensor and Control)

  • 박성욱;이득기;서영택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.30-32
    • /
    • 2001
  • Thomson's jumping ring was first exhibited by Elihu Thomson in 1887 and modified to include the floating variation by John A. Fleming in 1890. This vivid demonstration of electromagnetic induction is still used in physics classrooms to illustrate Faraday's and Lenz's laws and is the basis for linear actuators for sorvo-mechanical purpose as well as induction heating and rail guns. The jumping ring apparatus of the type described in this study is used to demonstrate and educate the effects of electromagnetic induction. To verify control algorithm, a sensor system and a data control/measurement system is required. The sensor system consist of photo-interrupted and encode circuit which is designed to take voltage according to the position of ring.

  • PDF

교육용 시스템 개발과 실시간 비선형 제어(II) (Development of an Educational System and Real Time Nonlinear Control (II))

  • 박성욱
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권12호
    • /
    • pp.571-576
    • /
    • 2002
  • This paper is to develop jumping ring system with three sensor arrays and to control levitated ring using dynamic neural mode. Placing an aluminum ring on the core and switching on an AC source causes the ring to jump in the air due to induced currents. The educational system is composed of 40th optical sensor array, encode circuit, 89C51 microprocessor and control board. The control board consists of power IC, and phase controller. Real time process is present to obtain a height of levitated ring for three different sensor arrays. Based on the educational system and the proposed dynamic neural mode, the height of levitation of the ring is controlled by reference signals. This paper focuses on real system controls using the dynamic neural mode with on line learning algorithm.

교육용 시스템 개발과 모형화 (Development of Education System and Modeling)

  • 박성욱;이득기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2042-2044
    • /
    • 2001
  • The jumping ring apparatus of the type described in this study is used to demonstrate and educate the effects of electromagnetic induction. Placing an aluminum ring over the core and switching on AC source causes the ring to jump in the air due to induced currents in the ring producing a magnetic field opposed to that produced in the core. If the AC current is slowly increased from zero or ring is placed over the core when AC is already flowing the ring floats due to the balance between its weight and the upward electromagnetic force. Pentimum computer is used to display this value to screen and generate control signal.

  • PDF

어구의 분류 (Classification of Fishing Gear)

  • 김대안
    • 수산해양기술연구
    • /
    • 제32권1호
    • /
    • pp.33-41
    • /
    • 1996
  • In order to obtain the most favourable classification system for fishing gears, the problems in the existing systems were investigated and a new system in which the fishing method was adopted as the criterion of classification and the kinds of fishing gears were obtained by exchanging the word method into gear in the fishing methods classified newly for eliminating the problems was established. The new system to which the actual gears are arranged is as follows ; (1)Harvesting gear \circled1Plucking gears : Clamp, Tong, Wrench, etc. \circled2Sweeping gears : Push net, Coral sweep net, etc. \circled3Dredging gears : Hand dredge net, Boat dredge net, etc. (2)Sticking gears \circled1Shot sticking gears : Spear, Sharp plummet, Harpoon, etc. \circled2Pulled sticking gears : Gaff, Comb, Rake, Hook harrow, Jerking hook, etc. \circled3Left sticking gears : Rip - hook set line. (3)Angling gears \circled1Jerky angling gears (a)Single - jerky angling gears : Hand line, Pole line, etc. (b)Multiple - jerky angling gears : squid hook. \circled2Idly angling gears (a)Set angling gears : Set long line. (b)Drifted angling gears : Drift long line, Drift vertical line, etc. \circled3Dragged angling gears : Troll line. (4)Shelter gears : Eel tube, Webfoot - octopus pot, Octopus pot, etc. (5)Attracting gears : Fishing basket. (6)Cutoff gears : Wall, Screen net, Window net, etc. (7)Guiding gears \circled1Horizontally guiding gears : Triangular set net, Elliptic set net, Rectangular set net, Fish weir, etc. \circled2Vertically guiding gears : Pound net. \circled3Deeply guiding gears : Funnel net. (8)Receiving gears \circled1Jumping - fish receiving gears : Fish - receiving scoop net, Fish - receiving raft, etc. \circled2Drifting - fish receiving gears (a)Set drifting - fish receiving gears : Bamboo screen, Pillar stow net, Long stow net, etc. (b)Movable drifting - fish receiving gears : Stow net. (9)Bagging gears \circled1Drag - bagging gears (a)Bottom - drag bagging gears : Bottom otter trawl, Bottom beam trawl, Bottom pair trawl, etc. (b)Midwater - drag gagging gears : Midwater otter trawl, Midwater pair trawl, etc. (c)Surface - drag gagging gears : Anchovy drag net. \circled2Seine - bagging gears (a)Beach - seine bagging gears : Skimming scoop net, Beach seine, etc. (b)Boat - seine bagging gears : Boat seine, Danish seine, etc. \circled3Drive - bagging gears : Drive - in dustpan net, Inner drive - in net, etc. (10)Surrounding gears \circled1Incomplete surrounding gears : Lampara net, Ring net, etc. \circled2Complete surrounding gears : Purse seine, Round haul net, etc. (11)Covering gears \circled1Drop - type covering gears : Wooden cover, Lantern net, etc. \circled2Spread - type covering gears : Cast net. (12)Lifting gears \circled1Wait - lifting gears : Scoop net, Scrape net, etc. \circled2Gatherable lifting gears : Saury lift net, Anchovy lift net, etc. (13)Adherent gears \circled1Gilling gears (a)Set gilling gears : Bottom gill net, Floating gill net. (b)Drifted gilling gears : Drift gill net. (c)Encircled gilling gears : Encircled gill net. (d)Seine - gilling gears : Seining gill net. (e)Dragged gilling gears : Dragged gill net. \circled2Tangling gears (a)Set tangling gears : Double trammel net, Triple trammel net, etc. (b)Encircled tangling gears : Encircled tangle net. (c)Dragged tangling gears : Dragged tangle net. \circled3Restrainting gears (a)Drifted restrainting gears : Pocket net(Gen - type net). (b)Dragged restrainting gears : Dragged pocket net. (14)Sucking gears : Fish pumps.

  • PDF