• Title/Summary/Keyword: Jump control

Search Result 140, Processing Time 0.027 seconds

Effect of Local Vibration on Quadriceps Femoris on Vertical Jump (대퇴사두근에 대한 국소적 진동 적용이 수직점프에 미치는 영향)

  • Bang, Hyun-Soo;Choen, Song-Hee;Lee, Hyun-Min;Heo, Gwang-Ho;Kang, Jong-Ho;Kim, Jin-Sang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.3 no.2
    • /
    • pp.75-80
    • /
    • 2008
  • Purpose : The purpose of this study was to evaluate the effects of local vibration on quadriceps femoris on vertical jump Method : The subjects(40) were divided into man control group(10) woman control group(10) and man vibration group(10), woman vibration group(10). Vibration group was given vibration on quadriceps femoris for 15 minutes and control group was given resting for 15 minutes. All subjects of each group were tested on vertical jump then pre and post test. Results : 1. Man control group and woman control group vertical jump didn't have statistically difference pre and post test(p>0.05). 2. In the woman vibration group vertical jump didn't have significant difference pre and post test(p>0.05), but had significant difference in the man vibration group(p<0.05) Conclusion : Vibration on quadriceps femoris have an effect on vertical jump. Therefore, the vibration will be effective in treatment of muscle strength.

  • PDF

A Study on The Jump Error Smoothing Scheme by Fuzzy Logic

  • Lee, Tae-Gyoo;Kim, Kwang-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.56.3-56
    • /
    • 2001
  • This study describes the jump error smoothing scheme with fuzzy logic based on the scalar adaptive filter. The scalar adaptive filter is an useful algorithm for smoothing abrupt jump errors. However, the performances of scalar adaptive algorithm depend on the variance of real signal. So to design an effective algorithm, many informations of real and jump signal are required. In this paper, the fuzzy rules are designed by the analysis of scalar adaptive filter, and then the improved and simplified scheme is developed for smoothing the jump error. Simulations to INS/GPS integrated system show that the proposed method is effective.

  • PDF

Jump resonance in anti-windup compensator for systems with saturating actuators (Anti-windup 보상기의 점프공진에 관한 연구)

  • 박영진;장원욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1060-1066
    • /
    • 1992
  • One of the undesirable nonlinear phenomenon called 'wind up' occours when the integrator in the controller and the saturated actuator interact. Large overshoot, slow response, instability, limit cycle and jump resonance are the characteristics of wind up phenomenon. Several 'anti-windup' compensators have been developed to prevent some of the aforementioned nonlinear characteristics such as instabilituy and limit cycle, but none has studied the effect of antiwindup compensator on the jump resonance. In this paper, we developed an analyitcal method to design the compensator to prevent not only limit cycle but also jump resonance. An illustrative example is included to show the compensator eliminates jump resonance of effectively.

  • PDF

Stabilization for Markovian Jump Nonlinear Systems with Time-Delay via T-S Fuzzy Control (시간 지연을 가지는 비선형 마르코비안 점프 시스템의 퍼지 제어)

  • Song, Min-Kook;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.235-236
    • /
    • 2008
  • This paper is concerned with the stabilization problem of Markovian jump nonlinear systems with time-delay via Takagi-Sugeno (T-S) fuzzy control approach. The T-S fuzzy models are employed to represent nonlinear systems with Markovian jump parameters and time-delay. The purpose of this paper is to design a mode-independent fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. Based on a stochstic Lyapunov function, stabilization sufficient conditions using a mode-independent fuzzy controller are derived for the Markovian jump fuzzy system in terms of Linear Matrix Inequalities (LMIs). Finally, a simulation example is presented to illustrate the effectiveness of the proposed method.

  • PDF

The Effects of Chronic Ankle Instability on Postural Control during Forward Jump Landing (전방 점프 착지 시 만성 발목 불안정성이 자세 조절에 미치는 영향)

  • Kim, Kew-wan;Jeon, Kyoungkyu;Park, Seokwoo;Ahn, Seji
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2022
  • Objective: The purpose of this study was to investigate how the chronic ankle instability affects postural control during forward jump landing. Method: 20 women with chronic ankle instability (age: 21.7 ± 1.6 yrs, height: 162.1 ± 3.7 cm, weight: 52.2 ± 5.8 kg) and 20 healthy adult women (age: 21.8 ± 1.6 yrs, height: 161.9 ± 4.4 cm, weight: 52.9 ± 7.2 kg) participated in this study. For the forward jump participants were instructed to stand on two legs at a distance of 40% of their body height from the center of force plate. Participants were jump forward over a 15 cm hurdle to the force plate and land on their non-dominant or affected leg. Kinetic and kinematic data were obtained using 8 motion capture cameras and 1 force plates and joint angle, vertical ground reaction force and center of pressure. All statistical analyses were using SPSS 25.0 program. The differences in variables between the two groups were compared through an independent sample t-test, and the significance level was to p < .05. Results: In the hip and knee joint angle, the CAI group showed a smaller flexion angle than the control group, and the knee joint valgus angle was significantly larger. In the case of ankle joint, the CAI group showed a large inversion angle at all events. In the kinetic variables, the vGRF was significantly greater in the CAI group than control group at IC and mGRF. In COP Y, the CAI group showed a lateral shifted center of pressure. Conclusion: Our results indicated that chronic ankle instability decreases the flexion angle of the hip and knee joint, increases the valgus angle of the knee joint, and increases the inversion angle of the ankle joint during landing. In addition, an increase in the maximum vertical ground reaction force and a lateral shifted center of pressure were observed. This suggests that chronic ankle instability increases the risk of non-contact knee injury as well as the risk of lateral ankle sprain during forward jump landing.

Effect of MWM and Taping on Balance and Jump Performance in Soccer Player with Functional Ankle Instability (기능적 발목 불안정성 축구 선수에 대한 움직임을 동반한 가동술과 테이핑 적용이 균형과 점프 수행력에 미치는 영향)

  • jeong, Yong-Sik;Jeong, Yeon-Woo;Yang, Seong-hwa
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.22 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • Background: The purpose of this study was to investigate the effects on balance and Jump performance in soccer player with functional ankle instability of Movement with mobilization (MWM) and taping. Methods: In 30 male college soccer player with functional ankle instability subjects of this study randomization, fibular reposition taping (FRT) group (n=10), kinesio taping (KT) group (n=10), control group (n=10) that included in the MWM and taping was classified group.Before and after intervention, measured in surface area ellipse and countermovement jump with arm swing. Results: Showed a significant balance and jump performance from the FRT group and KT group compared to the control group. Showed a significant improvement in balance from the FRT group compared to the KT group. Conclusions: MMW and taping showed the increased balance and Jump performance in soccer player with functional ankle instability.

  • PDF

A Study on the Stand-Alone GPS Jump Error Smoothing Scheme (Stand-Alone GPS 점프오차 스무딩 기법 연구)

  • Lee, Tae-Gyoo;Kim, Kwangjin;Park, Heung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1015-1023
    • /
    • 2001
  • error behaviour can be considered as a linear combination of low amplitude random noise and abrupt jumps. The reason of jump appearance can be explained by the semi-shading effects(buildings, trees), jamming, high dynamic of vehicle and so on. This study describes the stand-alone GPS error jump smoothing algorithm which is developed based on the scalar adaptive filter. The algorithm consists of the coarse jump smoothing and the fine jump smoothing. On the coarse smoothing step, GPS velocities or position differences are used as the measurement for the scalar adaptive filter. The purpose of adaptive filter is to smooth the jump errors. The coarse positions are detennined by the integration of smoothed velocities. On the fine smoothing step, the differences between GPS positions and the coarse positions are smoothed by another scalar adaptive filter. The reason of fine smoothing is based on the facts that smoothing accuracy depends on the variance ofusefuJ signa\. The coarse smoothing which deal with the difference of positions provides the rough error removing. So the coarse smoothed velocities can have much more low amplitude than the raw ones. The fine smoothing procedure provides high quality of filtering process. Simulation results show the efficiency of proposed scheme.

  • PDF

Effect of Jumping Exercise on Supporting Surface on Ankle Muscle Thickness, Proprioception and Balance in Adults with Functional Ankle Instability

  • Park, Chibok;Kim, Byeonggeun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.2
    • /
    • pp.1756-1762
    • /
    • 2019
  • Background: Functional ankle instability (FAI) indicating a decrease in muscle strength, proprioception, neuromuscular control, balance and postural control function. Objective: To investigate the effect of jumping exercise on the supporting surface on the ankle muscle thickness, proprioceptive sensation, and balance in adults with FAI. Design: Randomized Controlled Trial. Methods: Twenty young people with FAI were randomly assigned to the unstable supporting surface jump group (N=10) and the stable supporting surface jump group (N=10). The intervention was conducted three times a week for eight weeks, and for 30 minutes per session. Trampoline was used as an unstable support surface and the stable support surface was carried out on a regular floor. The thickness of the tibialis anterior muscle and medial gastrocnemius muscle was measured by ultrasonography, and the proprioception of dorsiflexion and plantarflexion was measured using an electrogoniometer. The dynamic balance was also measured with a balance meter. Results: The the muscle thickness of the medial gastrocnemius muscle was significantly higher in the stable supporting surface jump group than in the unstable supporting surface jump group (p<.05). Furthermore, the plantar flexion proprioception and dynamic balance were significantly improved in the unstable supporting surface jump group than in the stable supporting surface jump group in the intergroup comparison (p<.05). Conclusions: The conclusion has been reached in this study that the jumping exercise on the unstable supporting surface could be a more effective in improving FAI than the regular surface.

Analysis of the Vertical GRF Variables during Landing from Vertical Jump Blocking in Volleyball (배구 제자리 점프 블로킹 착지 시 숙련도에 따른 수직지면반력 변인 분석)

  • Youm, Chang-Hong;Park, Young-Hoon;Seo, Kook-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.57-64
    • /
    • 2007
  • The purpose of this study was to investigate comparative analysis of the vertical ground reaction force variables during landing from vertical jump blocking in volleyball through GRF analysis system. The subjects participated in this study were 6 male university volleyball player and 6 male acted as a control group. The results are as follows: 1. The skilled group was longer than the unskilled group in flight time during vertical jump blocking. 2. The skilled group was faster than the unskilled group in tFz2 during landing from vertical jump blocking. 3. The skilled group was higher than the unskilled group in Fz2 during landing from vertical jump blocking. 4. The skilled group was higher than the unskilled group in Fz2LR during landing from vertical jump blocking. 5. The skilled group was higher than the unskilled group in impulse during landing from vertical jump blocking. Consequently, during landing from vertical jump, the landing strategy of the skilled group was found as a form of a stiff landing. Therefore, this landing strategy will be required to strengthen of hip and knee extensors and ankle plantar flexors for injury prevention.

Anti-Jump Resonance Characteristics of Anti-Windup Compensator for Systems with a Saturating Actuator (와인드업 방지 보상기의 점프공진 제거 특성)

  • 장원욱;노현석;박영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1342-1350
    • /
    • 1993
  • One of the undesirable nonlinear phenomena in feedback control systems is called 'wind up', which is characterized by large overshoot, slow response, and even instability. It is caused by interaction between the integrator in the controller and the saturating actuator. Limit cycle and jump resonance are another nonlinear characteristrics of systems with saturating actuators. Several 'anti-windup' compensators have been developed to prevent some of the aforementioned nonlinear characteristics such as instability and limit cycle, but none has studied the effect of anti-windup compensator on the jump resonance. In this paper, we developed an analytical method to design the compensator to prevent not only limit cycle but also jump resonance. An illustrative example is included to show the compensator eliminates jump resonance effectively.