• Title/Summary/Keyword: Jump Timing

Search Result 15, Processing Time 0.026 seconds

The effects of strengthening exercise, stretching and meditation on electromyography onset timing of the rectus femoris and gastrocnemius during vertical jump performance in healthy adults

  • Eum, Ji Young;Kim, Yeoung Kyun;Park, Eun Ji;Lee, Ju Hee;Lee, Ji Eun;Lim, Jin Ju;Choi, Man Ho;Kim, Hyun Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.4 no.1
    • /
    • pp.22-27
    • /
    • 2015
  • Objective: Jump training helps increase the muscle power by improving the muscle strength and reaction time of the muscle in operation. The purpose of this study was to identify the effects of strengthening, stretching exercise and meditation on electromyographic (EMG) onset timing of rectus femoris and gastrocnemius muscle during vertical jump performance. Design: Cross-sectional study. Methods: Ten healthy adults (5 male and 5 female) who were familiar with the vertical jumping task and had no lower extremity injuries or any bone or joint disorders, were recruited for this study. Muscle onset timing was measured by surface EMG. After EMG onset timing were measured during performing three baseline vertical jump trials, strengthening and stretching exercises of the rectus femoris and gastrocnemius, and meditation were performed in random order. EMG onset timing was measured during vertical jump after intervention, respectively. EMG value was averaged for the three trials and analyzed using one-way repeated ANOVA. Results: During vertical jump, EMG onset timing of gastrocnemius was a significant difference after intervention (p<0.05), and then there was significantly faster in strengthening exercise than meditation (p<0.05). Conclusions: These results indicate the potential positive effect of performing strengthening exercise of the gastrocnemius before a jumping event. Future research is required to identify the effects of intervention over a long period.

Effect of Joint Kinetics and Coordination on the Within-Individual Differences in Maximum Vertical Jump (관절 역학과 협응이 최대 수직 점프의 개인내 수행차에 미치는 영향)

  • Kim, Yong-Woon;Seo, Jung-Suk;Han, Dong-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.305-314
    • /
    • 2012
  • The purpose of this study was to investigate the effects of joint kinetics and coordination on within-individual differences in maximum vertical jump. 10 male subjects aged 20 to 30 performed six trials in maximum vertical jump and with based on jump height the good(GP) and bad(BP) performances for each subject were compared on joint kinetics of lower extremity and coordination parameters such as joint reverse and relative phase. The results showed that maximum moment, power, and work done of hip joint and maximum moment of ankle joint in GP were significantly higher than that in the BP but no significant differences for the knee joint. We could observe a significant difference in joint reverse timing between both conditions. And also the relative phase on ankle-knee and ankle-hip in GP were significantly lower than that in the BP, which means that in GP joint movements were more in-phase synchronized mode. In conclusion, mechanical outputs of hip and ankle joints had an effect on within-individual differences in vertical jump and the inter-joint coordination and coordination including sequence and timing of joint motion also might be high influential factors on the performances within individual.

Evaluation of Daily Jump Compensation Methods for GPS Carrier Phase Data

  • Lee, Young Kyu;Yang, Sung-Hoon;Lee, Chang Bok;Lee, Jong Koo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2015
  • In this paper, we described the timing-offset comparison results between various daily jump compensation methods for GPS carrier phase (CP) measurement data. For the performance comparison, we used about 70 days GPS measurement data obtained from two GPS geodetic receivers which share the reference 1 PPS and RF signals and closely located in each other within a few meters. From the experiment results, the followings were observed. First, daily jumps existed in CP measurements depend on not only the environment but also the receiver which will make a full compensation be very hard or impossible. Second, clock bias can be occurred in the case of using a simple compensation with accumulation of daily jumps but it could be used in a short-period frequency comparison campaign (less than about 7 days) despite of its drawback.

Analysis of EMG Patterns during Ski Jumping using Training Simulator - Case Study for Ski Jumping Youth National Athletes - (훈련 시뮬레이터를 이용한 스키점프 도약 시 발생되는 EMG 패턴 분석 - 스키점프 유소년 국가대표 사례 연구 -)

  • Kim, Heungsoo;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.2
    • /
    • pp.43-48
    • /
    • 2022
  • Objective: The purpose of this study was to verify the effectiveness among simulating ski jumping trainings by comparing with actual ski jump. Method: Three healthy youth national athletes were recruited for this study (age: 13.70 ± 0.9 yrs, height: 169.30 ± 0.9 cm, jumping caree: 5.3 ± 0.9 yrs). Participants were asked to performed ski jumping with 3 simulating and one actual situation. A 3-dimensional motion analysis with 5 channels of EMG was performed in this study. Muscle activations of Rectus Femoris [RF], Tibialis Anterior [TA], Thoracis [TH], Gluteus maximus [GM], and Gastronemius [GL] were achieved with sampling rate of 2,000 Hz during each jump. Results: In the case of S1 in the actual jumping motion, the deviation of the muscle activity peak did not appear each trial, and the jump timing was consistent. For S2, the timing of the muscles peak activation which can maintain the posture of the upper body and ankles appeared at the beginning. In the case of S3, the part maintaining the ankle posture at the beginning appeared, but it could be expected that it would progress in the vertical direction due to the activation of GL at the time of jumping. Conclusion: The muscle activation peak before the take-off point showed a different pattern for each athlete, and individual differences were large. In addition, it was attempted to confirm the actual jump with simulation jump, and it was found that not only the difference in patterns but also the fluctuations in the timing of each muscle activation peak were large.

Performance Analysis of the Packet DS/SS Receiver using the BSP Methods (패킷 대역 확산 블록 수신기의 성능 분석)

  • 양대웅;강민구;박성경;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.47-55
    • /
    • 1994
  • This paper investigates the performance analysis of the packet DS/SS receiver with a PJED(phase-jump error detector) using the block signal processing(BSP) methods. The conventional packet DS/SS block receiver has a high probability of mistaking the phase-jump detection, which causes the frequency estimation error. The conventional receiver uses a Matched-Pulse Timing Extractor which has a complicated structure. The proposed packet DS/SS block receiver with the PJED which uses libearity of the phase has little probability of mistaking the phase-jump detection. The proposed Matched Pulse Timing Extractor gas the more simple structure but obtains the same performance on the exact matched-pluse timing as the conventional one does. The simulation results show that the proposed receiver gives about 2dB improvement in the BER compared with the conventional receiver.

  • PDF

A Study on the Improvement of Dynamic Characteristics of the Motor Stator Coil Winding Machine (모터 고정자 코일 권선기의 동특성 개선 연구)

  • Kim, Dong-Sung;Kim, Kwang-Young;Ham, Sang-Yong;Son, Young-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1589-1596
    • /
    • 2003
  • In this paper, we performed the improvement study for the dynamic characteristics enhancement of the motor stator coil vertical winding machine. The dynamic characteristics improvement was done by means of the optimized design and the weight reduction of the flyer configuration, modified design of the servo control system for the flyer and the former actuation, and the development of jump timing digital circuit for the reduction of former jumping error. As the results, the maximum winding speed pattern of the developed machine was attained up to 3000rpm and also reduced the jumping error. In conclusion, domestic design technology for manufacturing the motor coil vertical winding machine was established through this study.

Effect of fuel octane number on knock characteristics in a spark-ignition engine (연료의 옥탄가 변화에 따른 스파크 점화기관의 노킹특성의 변화)

  • 이홍철;전광민
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.61-68
    • /
    • 1992
  • Knock phenomenon is an abnormal combustion originated from autoignition of unburned gas in the end-gas region during the later stage of combustion process and it accompanys a high pitched metallic noise. Engine Knock is accompanied with a vibration of engine cylinder and when it is severe, it can cause major engine demage. Engine Knock is characterized in terms of knock crank angle, knock pressure, pressure jump and knock intensity. In this study, a 4-cylinder spark ignition engine was used for experiment and eighty consecutive cycles were analyzed statistically. The purpose of this study is to characterize spark ignition engine knock as a function of ignition timing and fuel research octane number. The result of this study can be summerized as follows. Knock occurrence angle approached TDC as ignition timing is advanced. Pressure and knock intensity gradually increased as spark timing is advanced. Mean knock occurence angle gradually approached TDC as fuel research octane number is decreased for identical spark timing. Knock intensity increased linearly as RON is decreased.

  • PDF

Analysis of Muscle Activities of Lower Extremity in Jumping Pattern (점프유형에 따른 하지의 근 활동 형태연구(근전도 데이터 표준화 방법을 중심으로))

  • Lee, Sung-Cheol;Hwang, In-Seong;Cho, Young-Jae;Kim, Sun-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.155-165
    • /
    • 2005
  • The purpose of this study was to compare the muscle activities of Double Legged Jump (DLJ) and Single Legged Jump (SLJ) by the normalization of muscle activity. Eight college students without the lower extremity injuries were selected as subjects for collecting EMG data of vastus medialis and gastrocnemius. The entire section of motion was established as eccentric and concentric contractions, and each of the contractions was divided into three sections with equal timing intervals, which becomes a total of 6 phases. The EMG data of each phase was integrated and normalized. The muscle activities of the vastus medialis for both eccentric and concentric contractions were significantly different between DLJ and SLJ(p<.05). The increase in overall muscle activity of SLJ was 33.6%. Approximately, there was an increase of 25.9% in eccentric contraction and 40% in concentric contraction. Moreover, the data of the muscle activity of gastrocnemius was similar to the data of the muscle activity of vastus medialis. In conclusion, this research suggests muscle activity of a certain motion can be normalized for an analysis of another motion.

The Effects of Restricted Trunk Motion on the Performance of Maximum Vertical Jump (몸통 운동의 제약이 최대 수직점프의 수행에 미치는 영향)

  • Kim, Yong-Woon;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.27-36
    • /
    • 2009
  • The purpose of this study was to identify effects of restricted trunk motion on the performances of the maximum vertical jump. Ten healthy males performed normal countermovement jump(NJ) and control type of countermovement jump(CJ), in which subjects were required to restrict trunk motion as much as possible. The results showed 10% decreases of jumping height in CJ compared with NJ, which is primarily due to vertical velocity at take off. NJ with trunk motion produced significantly higher GRF than RJ, especially at the early part of propulsive phase, which resulted from increased moments on hip joint. And these were considered the main factors of performance enhancement in NJ. There were no significant differences in the mechanical outputs on knee and ankle joint between NJ and RJ. With trunk motion restricted, knee joint alternatively played a main role for propulsion, which is contrary on the normal jump that hip joint was highest contributor. And restricted trunk motion resulted in the changes of coordination pattern, knee-hip extension timing compared with normal proximal-distal sequence. In conclusion these results suggest that trunk motion is effective strategy for increasing performance of vertical jumping.

Kinetic Analysis of Three-Point Jump Shot in Basketball (농구 3득점 점프슛 동작의 운동역학적 분석)

  • Lee, Dong-Jin;Jeong, Ik-Su
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • The purpose of the study was to analyze kinetic factors required to the three-point jump shot of the basketball games through 3-D analysis and ground reaction force(GRF) analysis. Six university male players participated in this study. The results of the study were showed that (1) resultant velocity in the center of mass(COM) was $0.84{\pm}0.27\;m/s$ since a player didn't shot a ball in the highest peak and shot ball at the moment of going up forward and vertical movement. Therefore, it is necessary to find a proper timing to shot a ball; (2) the angular velocity was largely increased in upper arm and fore arm out of the upper-limb segments and the hands had the largest angular velocity since the body is in a fixed situation and angular speed is rapidly increased by the wrist' snap with the rapid movement of upper arm and forearm at the time of release a ball; (3) it is judged that a player can shot a ball at the accurate and high release point when the player collects power vertically to the maximum by keeping GRF to the right and the rear in a proper way and by keeping the body's balance so that a large power may not be dispersed.