• Title/Summary/Keyword: Jump Phenomenon

Search Result 53, Processing Time 0.031 seconds

A Study on the Characteristic of Fracture Toughness in the Multi-Pass Welding Zone for Nuclear Piping (원전 배관재 다층 용접부의 파괴 특성에 관한 연구)

  • Park, Jae-Sil;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.381-389
    • /
    • 2001
  • The objective of this paper is to evaluate the fracture resistance characteristics of SA508 Cl.1a to SA508 Cl.3 welds manufactured for the reactor coolant loop piping system of nuclear power plants. The effect of the crack plane orientation to the welding process orientation and the preheat temperature on the fracture resistance characteristics were discussed. Results of the fracture resistance test showed that the effect of the crack plane orientation to the welding process orientation of the fracture toughness is significant, while that of preheat temperature on the fracture toughness is negligible. The micro Vickers hardness test, the metallographic observation and the fractography analysis were conducted to analyse the crack jump phenomenon on the L-R crack plane orientation in the multi-pass welding zone. As these results, it is shown that the crack jump phenomenon was produced because of the inhomogeneity between welding beads and the crack plane orientation must be considered for the safety of the welding zone in the piping system.

Detection of GPS Clock Jump using Teager Energy (Teager 에너지를 이용한 GPS 위성 시계 도약 검출)

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.58-63
    • /
    • 2010
  • In this paper, we propose a simple technique for the detection of a frequency jump in the GPS clock behavior. GPS satellite atomic clocks have characteristics of a second order polynomial in the long term and a non-periodic frequency drift in the short term, showing a sudden frequency jump occasionally. As satellite clock anomalies influence on GPS measurements, it requires to develop a real time technique for the detection of the clock anomaly on the real-time GPS precise point positioning. The proposed technique is based on Teager energy which is mainly used in the field of various signal processing for the detection of a specific signal or symptom. Therefore, we employed the Teager energy for the detection of the jump phenomenon of GPS satellite atomic clocks, and it showed that the proposed clock anomaly detection strategy outperforms a conventional detection methodology.

Coverlayer Fabrication of Small Form Factor Optical Disks

  • Kim, Jin-Hong;Kim, Jong-Hwan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.188-191
    • /
    • 2005
  • Two different coverlayers which is useful for an optical buffer and a mechanical protection made of not only UV resin but also polycarbonate coversheet were prepared on small form factor optical disks. Thin coverlayer of 10 ${\mu}m$ and thick coverlayer of 80 ${\mu}m$ were fabricated. 10 ${\mu}m$-thick coverlayer was coated using UV resin material by spin coating method for the flying optical head application. On the other hand, 80 ${\mu}m$-thick coverlayer using coversheet with the resin bonding material was prepared for the non-flying optical head application. Both cases, the thickness uniformity seem to be the primary prerequisite factor, and it was analyzed. Thickness of 10 ${\mu}m$-thick UV resin coverlayer could be controlled within ${\pm}0.2m$ range and 80 ${\mu}m$-thick coversheet could be controlled within ${\pm}3{\mu}m$ range. However, the yield of such thickness tolerance was not good. New design of metal housing holder and polycarbonate outer ring was adopted to diminish the ski-jump phenomenon. Specifically, the polycarbonate outer ring was very effective to reduce the ski-jump. However, it should be careful to maintain uniform edge between disk and ring for the perfect coverlayer.

  • PDF

Stochastic Responses of a Spring-Pendulum System under Narrow Band Random Excitation (협대역 불규칙가진력을 받는 탄성진자계의 확률적 응답특성)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • The nonlinear response statistics of an spring-pendulum system with internal resonance under narrow band random excitation is investigated analytically- The center frequency of the filtered excitation is selected to be close to natural frequency of directly excited spring mode. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The nonlinear phenomena, such as jump and multiple solutions, under narrow band random excitation were found by Gaussian closure method.

  • PDF

ON GIBBS CONSTANT FOR THE SHANNON WAVELET EXPANSION

  • Shim, Hong-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.529-534
    • /
    • 1997
  • Even though the Shannon wavelet is a prototype of wavelets are assumed to have. By providing a sufficient condition to compute the size of Gibbs phe-nomenon for the Shannon wavelet series we can see the overshoot is propotional to the jump at discontinuity. By comparing it with that of the Fourier series we also that these two have exactly the same Gibbs constant.

Nonlinear Vibration Characteristics of Piezoelectric Microactuators in Hard Disk Drive Drives (HDD용 압전형 마이크로 액츄에이터의 비선형 진동특성)

  • Chong, Duk-Young;Lee, Seung-Yop;Kim, Chul-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.225-231
    • /
    • 2000
  • Nonlinear characteristics of piezoelectric-type micro actuator used for hard disk drives are experimentally analyzed using Hutchinson's Magnum acturator. The nonlinear effects include hysteresis, superharmonic resonance, jump phenomenon, and shifting of natural frequencies. The effects of exciting frequency and input voltage on the nonlinear phenomena are investigated. It is shown that the micro actuator has the typical 3 times superhamonic resonances coupled to both 1st torsional and sway modes of the suspension.

  • PDF

Contact Model of Partial Rotor Rub (부분회전마멸에서의 접촉모델)

  • 최연선;배철용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.277-282
    • /
    • 2001
  • Partial rotor rub occurs when an obstacle on the stator of a rotating machinery disturbs the free whirling motion of a rotor, which is more common than full annular rub for the cases of rubbing in rotating machinery. The nonlinearity due to the intermittent contacts and friction during partial rotor rub makes the phenomenon complex. The several nonlinear phenomena of superharmonics, subharmonics, and jump phenomenon are demonstrated for the partial rub using an experimental apparatus in this study. A piecewise-linear model and a rebound model using the coefficient of restitution are investigated on the basis of experimental observations in order to adopt as an analytical model of the contact between the rotor and stator during whirling motion. The contact stiffness, coefficient of restitution, and friction coefficient for the contact during partial rub are calculated from the comparison between the numerical simulation and the experimental results. Also, the numerical simulations for the model of partial rub are done for the various system parameters of clearance, contact stiffness, and friction coefficient in order to find the nonlinear behavior of partial rotor rub.

  • PDF

Subsynchronous Vibration Behavior of Turbocharger Supported by Semi Floating Ring Bearing (세미 플로팅 링 베어링으로 지지된 터보차저의 Subsynchronous 진동 특성)

  • Lee, Donghyun;Kim, Youngcheol;Kim, Byungok;Ahn, Kookyoung;Lee, Youngduk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The small turbocharger for the automotive application is designed to operate up to 200,000 rpm to increase system efficiency. Because of high rotation speed of turbocharger, floating ring bearing are widely adopted due to its low friction loss and high rotordynamic stability. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a semi-floating ring bearing. The rotordynamic model for the turbocharger rotor was constructed based on the finite element method and fluid film forces were calculated based on the infinitely short bearing assumption. In linear analysis, we considered fluid film force as stiffness and damping element and in nonlinear analysis, the fluid film force was calculated by solving the time dependent Reynolds equation. We verified the developed theoretical model by comparing to modal test results of test rotors. The analysis results show that there are two unstable modes, which are conical and cylindrical modes. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis, frequency jump phenomenon demonstrated when vibration mode is changed from conical mode to cylindrical one. This jump phenomenon was also demonstrated in the test. However, the natural frequency measured in the test differs from those obtained using nonlinear analysis.

Stability Analysis of Floating Ring Bearing Supported Turbocharger (플로팅 링 베어링으로 지지된 터보차저 로터의 안정성 해석)

  • Lee, Donghyun;Kim, Youngcheol;Kim, Byungok
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.302-307
    • /
    • 2015
  • The use of turbocharger in internal combustion engines has increased as it is a key components for improving system efficiency without increasing engine size. Because of increasing demand, many studies have evaluated rotordynamic performance so as to increase rotation speed. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a floating ring bearing. We constructed rotor model by using the finite element method and approximated bearings as being infinitely short. In the linear model, we considered fluid film force as stiffness and damping element. In nonlinear analysis, calculation of the fluid film force involved solving the time dependent Reynolds equation. We verified the developed model by comparing the results to those of previous research. The analysis results show that there are four unstable modes, which are rigid body modes combining ring and rotor motion. As the rotating speed increases, the logarithmic decrement shows that certain unstable modes goes into the stable area or the stable mode goes into the unstable area. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis frequency jump phenomenon demonstrated in several experimental studies appears. The analysis results also showed that frequency jump phenomenon occurs when the vibration mode changes and the sequence of unstable mode matches the linear analysis result. However, the natural frequency predicted using linear analysis differs from those obtained using nonlinear analysis.

FINITE SPEED OF PROPAGATION IN DEGENERATE EINSTEIN BROWNIAN MOTION MODEL

  • HEVAGE, ISANKA GARLI;IBRAGIMOV, AKIF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.108-120
    • /
    • 2022
  • We considered qualitative behaviour of the generalization of Einstein's model of Brownian motion when the key parameter of the time interval of free jump degenerates. Fluids will be characterised by number of particles per unit volume (density of fluid) at point of observation. Degeneration of the phenomenon manifests in two scenarios: a) flow of the fluid, which is highly dispersing like a non-dense gas and b) flow of fluid far away from the source of flow, when the velocity of the flow is incomparably smaller than the gradient of the density. First, we will show that both types of flows can be modeled using the Einstein paradigm. We will investigate the question: What features will particle flow exhibit if the time interval of the free jump is inverse proportional to the density and its gradient ? We will show that in this scenario, the flow exhibits localization property, namely: if at some moment of time t0 in the region, the gradient of the density or density itself is equal to zero, then for some T during time interval [t0, t0 + T] there is no flow in the region. This directly links to Barenblatt's finite speed of propagation property for the degenerate equation. The method of the proof is very different from Barenblatt's method and based on the application of Ladyzhenskaya - De Giorgi iterative scheme and Vespri - Tedeev technique. From PDE point of view it assumed that solution exists in appropriate Sobolev type of space.