• Title/Summary/Keyword: Jsc

Search Result 169, Processing Time 0.032 seconds

One-year Survival Rate of Patients with Primary Malignant Central Nervous System Tumors after Surgery in Kazakhstan

  • Akshulakov, Serik;Igissinov, Nurbek;Aldiyarova, Nurgul;Akhmetzhanova, Zauresh;Ryskeldiyev, Nurzhan;Auezova, Raushan;Zhukov, Yevgeniy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6973-6976
    • /
    • 2014
  • This study was conducted to evaluate the one-year survival rate of patients with primary malignant central nervous system (CNS) tumors after surgical treatment in Kazakhstan. Retrospective data of patients undergoing operations in the Department of Central Nervous System Pathology in the JSC National Centre for Neurosurgery in the period from 2009 to 2011 were used as the research material. Kaplan-Meier survival analysis was performed with the following information: gender, date of birth, place of residence, diagnosis according to ICD-10, the date of the operation, the morphological type of tumor, clinical stage, state at the end of the first year of observation, and the date of death. The study was approved by the ethical committee of the JSC National Centre for Neurosurgery. The overall one-year overall survival rate (n=152) was 56.5% (95% confidence interval (CI): 50.2-62.7), and 79.5% (95% CI 72.2-86.8) and 33.1% (95% CI: 21.0-42.3) for Grades I-II (n=76) and Grades III-IV (n=76), respectively. Significant prognostic factors which affected the survival rate were age and higher tumor grade (Grades III-IV), corresponding with results described elsewhere in the world.

The Study on the FRBR Adoption into Cataloging Rule Focused on its Expression Level (표현형 계층을 중심으로 한 FRBR 모형 분석 및 목록 체계 수용에 관한 연구)

  • Cho Jane
    • Journal of Korean Library and Information Science Society
    • /
    • v.36 no.2
    • /
    • pp.221-239
    • /
    • 2005
  • FRBR, as is new conceptual model of bibliography based on entity-relation model, direct to revision of AACR 3.JSC has progressed work to adopt FRBR conceptual model into cataloging rule, especially for solving the problem of expression level, propose to overall change of uniform title & GMD. This study considers the matters about expression level of FRBR model. And examine possibility of adoption FRBR model to domestic cataloging rule and making out practice.

  • PDF

Poly-Si Thin Film Solar Cells by Hot-wire CVD

  • Lee, J.C.;Chung, Y.S.;Kim, S.K.;Yoon, K.H.;Song, J.S.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1034-1037
    • /
    • 2003
  • Microcrystalline silicon(c-Si:H) thin-film solar cells are prepared with intrinsic Si-layer by hot wire CVD. The operating parameters of solar cells are strongly affected by the filament temperature ($T_f$) during intrinsic layer. Jsc and efficiency abruptly decreases with elevated $T_f$ to $1400^{\circ}C$. This deterioration of solar cell parameters are resulted from increase of crystalline volume fraction and corresponding defect density at high $T_f$. The heater temperature ($T_h$) are also critical parameter that controls device operations. Solar cells prepared at low $T_h$ ($<200^{\circ}C$) shows a similar operating properties with devices prepared at high $T_f$, i.e. low Jsc, Voc and efficiency. The origins for this result, however, are different with that of inferior device performances at high $T_f$. In addition the phase transition of the silicon films occurs at different silane concentration (SC) by varying filament temperature, by which highest efficiency with SC varies with $T_f$.

  • PDF

A simulation of high efficiently thin film solar cell with buffer layer (버퍼층 삽입을 통한 박막 태양전지의 고효율화 시뮬레이션)

  • Kim, Heejung;Jang, Juyeon;Baek, Seungsin;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.64.2-64.2
    • /
    • 2011
  • a-Si 박막 태양전지는 a-Si:H을 유리 기판 사이에 주입해 만드는 태양전지로, 뛰어난 적용성과 경제성을 지녔으나 c-Si 태양전지에 비해 낮은 변환 효율을 보이는 단점이 있다. 변환 효율을 높이기 위한 연구 방법으로는 a-Si 박막 태양전지 단일cell 제작 시 high Bandgap을 가지는 p-layer를 사용함으로 높은 Voc와 Jsc의 향상에 기여할 수 있는데, 이 때 p-layer의 defect 증가와 activation energy 증가도 동시에 일어나 변환 효율의 증가폭을 감소시킨다. 이를 보완하기 위해 본 실험에서는 p-layer에 기존의 p-a-Si:H를 사용함과 동시에 high Bandgap의 buffer layer를 p-layer와 i-layer 사이에 삽입함으로써 그 장점을 유지하고 높은 defect과 낮은 activation energy의 영향을 최소화하였다. ASA 시뮬레이션을 통해 a-Si:H보다 high Bandgap을 가지는 a-SiOx 박막을 사용하여 p-type buffer layer의 두께를 2nm, Bandgap 2.0eV, activation energy를 0.55eV로 설정하고, i-type buffer layer의 두께를 2nm, Bandgap 1.8eV로 설정하여 삽입하였을 때 박막 태양전지의 변환 효율 10.74%를 달성할 수 있었다. (Voc=904mV, Jsc=$17.48mA/cm^2$, FF=67.97).

  • PDF

A nuclear battery based on silicon p-i-n structures with electroplating 63Ni layer

  • Krasnov, Andrey;Legotin, Sergey;Kuzmina, Ksenia;Ershova, Nadezhda;Rogozev, Boris
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1978-1982
    • /
    • 2019
  • The paper presents the electrical performance measurements of a prototype nuclear battery and two types of betavoltaic cells. The electrical performance was assessed by measuring current-voltage properties (I-V) and determining the short-circuit current and the open-circuit voltage. With 63Ni as an irradiation source, the open-circuit voltage and the short-circuit current were determined as 1 V and 64 nA, respectively. The prototype consisted of 10 betavoltaic cells that were prepared using radioactive 63Ni. Electroplating of the radioactive 63Ni on an ohmic contact (Ti-Ni) was carried out at a current density of 20 mA/㎠. Two types of betavoltaic cells were studied: with an external 63Ni source and a 63Ni-covered source. Under irradiation of the 63Ni source with an activity of 10 mCi, the open-circuit voltage Voc of the fabricated cells reached 151 mV and 109 mV; the short-circuit current density Jsc was measured to be 72.9 nA/cm2 and 64.6 nA/㎠, respectively. The betavoltaic cells had the fill factor of 55% and 50%, respectively.

Gravure off-set printing method for the high-efficiency multicrystalline-silicon solar cell (Gravure off-set 인쇄법을 적용한 고효율 다결정 실리콘 태양전지)

  • Kim, Dong-Ju;Kim, Jung-Mo;Bae, So-Ik;Jun, Tae-Hyun;Song, Ha-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.293-298
    • /
    • 2011
  • The most widely used method to form an electrode in industrial solar cells are screen printing. Screen printing is characterized by a relatively simple and well-known production sequence with high throughput rates. However the method is difficult to implement a fine line width of high-efficiency solar cells can not be made. The open circuit voltage(Voc) and the short circuit current density(Jsc) and fill factor(FF) need to be further improved to increase the efficiency of silicon solar cells. In this study, gravure offset printing method using the multicrystalline-silicon solar cells were fabricated. Gravure off-set printing method which can print the fine line width of finger electrode can have the ability reduce the shaded area and increase the Jsc. Moreover it can make a high aspect ratio thereby series resistance is reduced and FF is increased. Approximately $50{\mu}m$ line width with $35{\mu}m$ height was achieved. The efficiency of gravure off set was 0.7% higher compare to that of scree printing method.

  • PDF

Synthesis and Application of New Ru(II) Complexes for Dye-Sensitized Nanocrystalline TiO2 Solar Cells

  • Seok, Won-K.;Gupta, A.K.;Roh, Seung-Jae;Lee, Won-Joo;Han, Sung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1311-1316
    • /
    • 2007
  • To develop photo-sensitizers for dye-sensitized solar cells (DSCs) used in harvesting sunlight and transferring solar energy into electricity, we synthesize novel Ru(II) polypyridyl dyes and describe their characterization. We also investigate the photo-electrochemical properties of DSCs using these sensitizers. New dyes contain chromophore unit of dafo (4,5-diazafluoren-9-one) or phen-dione (1,10-phenanthroline-5,6-dione) instead of the nonchromophoric donor unit of thiocyanato ligand in cis-[RuII(dcbpy)2(NCS)2] (dcbpy = 4,4'-dicarboxy- 2,2'-bipyridine) coded as N3 dye. For example, the photovoltaic data of DSCs using [RuII(dcbpy)2(dafo)](CN)2 as a sensitizer show 6.85 mA/cm2, 0.70 V, 0.58 and 2.82% in short-circuit current (Jsc ), open-circuit voltage (Voc), fill factor (FF) and power conversion efficiency (Eff), which can be compared with those of 7.90 mA/ cm2, 0.70 V, 0.53 and 3.03% for N3 dye. With the same chelating ligand directly bonded to the Ru metal in the complex, the CN ligand increases the Jsc value by double, compared to the SCN ligand. The extra binding ability in these new dyes makes them more resistant against ligand loss and photo-induced isomerization within octahedral geometry.

기판후면 온도 모니터링 및 Fluxmeter를 이용한 CIGS 박막 제조와 고효율 태양전지로의 응용연구

  • Kim, Eun-Do;Jo, Seong-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.668-668
    • /
    • 2013
  • CIGS 박막태양전지는 다른 박막태양전지에 비해 높은 에너지 변환효율을 보이고 있으며, 광범위한 기술 응용분야를 가지고 있다. CIGS를 광흡수층으로 하는 태양전지의 구조는 5개의 단위박막(배면전극, 광흡수층, 버퍼층, 앞면 투명전극, 반사방지막)을 순차적으로 형성시켜 만든다. 단위박막별로 다양한 종류의 재료와 조성, 또한 제조방법에서는 갖가지 물리적, 화학적 박막 제조방법이 사용된다. 현재 광흡수층인 CIGS층의 경우 동시증발법과 스퍼터링법이 높은 효율을 보이고 있다. 본 연구에서는 CIGS층을 3-stage process를 적용한 동시증발법을 사용하였고, Fluxmeter와 기판후면 온도 모니터링을 이용하여 제조하였으며, 버퍼층은 moving 스퍼터링 법으로 ZnS를 증착하였고, 투명전극층은 PLD (Pulsed Laser Deposition)를 이용하여 제조하였다. 가장 높은 광변환효율을 보인 Al/ZnO/CdS/Mo/SLG박막시료는 유효면적 0.45 $cm^2$에 광변환효율 15.71%, Jsc: 33.64 mA/$cm^2$, Voc: 0.64 V, FF: 73.18%를 얻을 수 있었으며, CdS를 ZnS로 대체한 Al/ZnO/ZnS/Mo/SLG 박막시료는 유효면적 0.45 $cm^2$에 광변환효율 12.13%, Jsc: 33.22 mA/$cm^2$, Voc: 0.60 V, FF: 62.85%를 얻을 수 있었다.

  • PDF

A Study on Life Cycle Cost on Railway Locomotive Systems

  • Egamberdiev, Bunyod;Lee, Kookchan;Lee, Jongwoo;Burnashev, Shamil
    • International Journal of Railway
    • /
    • v.9 no.1
    • /
    • pp.10-14
    • /
    • 2016
  • Life cycle cost analysis is compulsively required for the system operation. System operation costs are consisted of acquisition, operation, maintenance and so on. In the beginning of the system planning, we need to take into account of various costs following the system operating. To implement LCC, we need to analyze system life cycle to identify all costs during system life. The costs can be divided into three parts. The first part is purchasing cost, the second for operating cost and the last for disposal cost. The second operating cost can be decomposed of operating cost included labor, energy consumption cost for system running, maintenance costs to keep systems healthy, delay cost caused from maintenance and hazard cost, and so on. In this paper, we carried out for railway locomotives which operate over more 30years and which cost about 10 million USD. We decompose the life cycle of the locomotives and break down the locomotives into subsystems to require maintenance or not, and subsystems to need energy or not. We showed how to decide optimal locomotives through cost identification and system breakdown.

Characterization of ${\mu}c$-Si:H Thin-film Solar Cells by Hot-wire CVD

  • Lee, J.C.;Chung, Y.S.;Kim, S.K.;Youn, K.H.;Song, J.S.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1598-1600
    • /
    • 2003
  • Microcrystalline silicon(c-Si:H) thin-film solar cells are prepared with intrinsic Si-layer by hot wire CVD. The operating parameters of solar cells are strongly affected by the filament temperature ($T_f$) during intrinsic layer. Jsc and efficiency abruptly decreases with elevated $T_f$ to $1400^{\circ}C$. This deterioration of solar cell parameters are resulted from increase of crystalline volume fraction and corresponding defect density at high $T_f$ The heater temperature ($T_h$) are also critical parameter that controls device operations. Solar cells prepared at low $T_h$ (<$200^{\circ}C$) shows a similar operating properties with devices prepared at high $T_f$, i.e. low Jsc, Voc and efficiency. The origins for this result, however, are different with that of inferior device performances at high $T_f$. In addition the phase transition of the silicon films occurs at different silane concentration (SC) by varying filament temperature, by which highest efficiency with SC vanes with $T_f$.

  • PDF