• Title/Summary/Keyword: Joystick Device

Search Result 33, Processing Time 0.022 seconds

Design of A Haptic Device for Dismantling Process Using Excavator (굴삭기를 이용한 해체 장비용 햅틱 장치 설계)

  • Kim, Dong-Nam;Oh, Kyeong-Won;Hong, Dae-Hie;Park, Jong-Hyup
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1190-1194
    • /
    • 2007
  • Since the dismantling processes of building are very dangerous, there have been many studies to develop a remote operating devices using joystick. In this paper, in order to improve the operability of the dismantling actuator that is usually an excavator, a novel concept of tele-operated haptic device is proposed. Operators who use this haptic device with additional environmental sensing devices can work safely away from the dangerous sites. First, based on the concept design of the haptic device, the workspace mapping from the haptic device to the excavator is explored. Second, the kinematics which deals with the conversion from the 3 dimensional position information of the haptic device to the joint variable information of the backhoe is included. Lastly, 3D graphical simulation of both haptic device and the backhoe will be shown. This new design of the haptic device can be easily manufactured and gives the workers very convenient and transparent remote control capability.

  • PDF

A Joystick-driven Mouse Controlling Method using Hand Gestures (손 제스쳐를 이용한 조이스틱 방식의 마우스제어 방법)

  • Jung, Jin-Young;Kim, Jung-In
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.60-67
    • /
    • 2016
  • PC users have long been controlling their computers using input devices such as mouse and keyboard. To improve inconveniences of these devices, the method of screen-touching has widely been used these days, and devices recognizing human gestures are being developed one after another. Fox example, Kinect, developed and distributed by Microsoft, is a non-contact input device that recognizes human gestures through motion-recognizing sensors, thus replacing the mouse as an input device. However, when controlling the mouse on a large screen, it suffers from the problem of requiring large motions in order to move the mouse pointer to the edges of the screen. In this paper, we propose a joystick-driven mouse-controlling method which enables the user to move the mouse pointer to the corners of the screen with small motions. The experimental results show that movements of the user's palm within the range of 30 cm ensure movements of the mouse pointer to the edges of the screen.

New Input Device for Large Screen First Person Shooter Games (대화면 FPS 게임을 위한 새로운 레이저기반 입력장치)

  • Han, Ngoc-Son;Kim, Seong-Whan;Park, In-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.183-186
    • /
    • 2007
  • In this paper, we present a new game interface design for First Person Shooters (FPS). Previously, FPSs on computer are commonly played using keyboard/mouse or joystick along with PC display. We improve the communication environment between player and game world by means of new control system including large screen, laser gun, and directional device, which create a real life-like space for players. Because traditional display for FPS uses CRT, it cannot support large screen display due to limitation of CRT technology. We designed and implemented a new input device using laser recognizable display. We implemented a new FPS based on Quake III that is in accordance with the new devices. Results suggest that the combined interface creates a method which helps beginners to enjoy playing a FPS immediately and gives experienced players a new gaming experience.

  • PDF

Implementation of Virtual Environment System for Multi-joint Manipulator Designed for Special Purpose Equipment with Wearable Joystick used in Disaster Response (웨어러블 조작기 기반 재난·재해 특수 목적기계 다관절 작업기의 가상 환경 작업시스템 구현)

  • Cha, Young Taek;Lee, Yeon Ho;Choi, Sung Joon
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.33-46
    • /
    • 2020
  • We introduce a piece of special-purpose equipment for responding to disasters that has a dual-arm manipulator consisting of six-axis multi joints, and a master-slave operating system controlled by a wearable joystick for intuitive and convenient operation. However, due to the complexity and diversity of a disaster environment, training and suitable training means are needed to improve the interaction between the driver and equipment. Therefore, in this paper, a system that can improve the operator's immersion in the training simulation is proposes, this system is implemented in a virtual environment. The implemented system consists of a cabin installed with the master-slave operation system, a motion platform, visual and sound systems, as well as a real-time simulation device. This whole system was completed by applying various techniques such as a statistical mapping method, inverse kinematics, and a real-time physical model. Then, the implemented system was evaluated from a point of view of the appropriateness of the mapping method, inverse kinematics, the feasibility for real-time simulations of the physical environment through some task mode.

A Research for Interface Based on EMG Pattern Combinations of Commercial Gesture Controller (상용 제스처 컨트롤러의 근전도 패턴 조합에 따른 인터페이스 연구)

  • Kim, Ki-Chang;Kang, Min-Sung;Ji, Chang-Uk;Ha, Ji-Woo;Sun, Dong-Ik;Xue, Gang;Shin, Kyoo-Sik
    • Journal of Engineering Education Research
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • These days, ICT-related products are pouring out due to development of mobile technology and increase of smart phones. Among the ICT-related products, wearable devices are being spotlighted with the advent of hyper-connected society. In this paper, a body-attached type wearable device using EMG(electromyography) sensors is studied. The research field of EMG sensors is divided into two parts. One is medical area and another is control device area. This study corresponds to the latter that is a method of transmitting user's manipulation intention to robots, games or computers through the measurement of EMG. We used commercial device MYO developed by Thalmic Labs in Canada and matched up EMG of arm muscles with gesture controller. In the experiment part, first of all, various arm motions for controlling devices are defined. Finally, we drew several distinguishing kinds of motions through analysis of the EMG signals and substituted a joystick with the motions.

Design of a Remote Controller for Dismantling Processes Using Excavator (굴삭기를 이용한 해체 장비용 원격 조종 장치 설계)

  • Kim, Dong-Nam;Oh, Kyeong-Won;Hong, Dae-Hie;Park, Jong-Hyup;Hong, Suk-Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.95-102
    • /
    • 2008
  • Since the processes of dismantling are very dangerous, there have been many studies to develop remote operating devices using joystick. In this paper, in order to improve the operability of the dismantling equipment that is usually an excavator, a novel concept of tole-operated device is proposed. Operators who use this device with additional environmental sensing devices can work safely away from the dangerous sites. First, based on the concept design of the remote controller, its workspace is analyzed and the workspace mapping from the device to the excavator is explored. Second, after 7 steps of the excavating processes are defined, the kinematics which deals with the conversion from the 3 dimensional position information of the device to the joint variable information of the backhoe is included in this paper. Lastly, 3D graphical simulation of both remote controller and the backhoe will be shown. This new design of the remote control device tan be easily manufactured and gives the workers very convenient and transparent remote control capability.

Analysis and Design of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6 자유도 역감제시장치의 설계 및 해석)

  • Yoon, Jung-son;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1178-1186
    • /
    • 2001
  • This paper presents design and analysis of a 6 degree-of-freedom new haptic device using a par-allel mechanism for interfacing with virtual reality. The mechanism is composed of three pantograph mecha-misms that, driven by ground-fixed servomotors. stand perpendicularly to the base plate. Three spherical joints connect the top of the pantograph with connecting bars, and three revolute joint connect connecting bars with a mobile joystick handle. Forward and inverse kinematic analyses have been performed and the Jacobian matrix is derived by using the screw theroy. Performance indices such as GPI(Global Payload Index), GCI(Global Conditioning index), Traslation and Orientation workspaces, and Sensitivity are evaluated to find optimal pa-rameters in the design stage. The proposed haptic mechanism has better load capability than those of the ex-isting haptic mechanisms due to the fact that motors are fixed at the base. It has also wider orientation work-space mainly due to RRR type spherical joints.

  • PDF

Tactile Navigation System using a Haptic Device (햅틱 디바이스를 이용한 촉감형 네비게이션 시스템)

  • Lee, Dong-Hyuk;Noh, Kyung-Wook;Kang, Sun Kyun;Kim, Hyun Woo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.807-814
    • /
    • 2014
  • In this paper, we proposed a haptic navigation system which used the tactile data for the user guides of the mobile robot to the reference point via tele-operation in unknown blind environment. This navigation system can enable a mobile robot to avoid obstacles and move to the reference point, according to the direction provided by the device guides through a haptic device consisting of a vibration motor in a blind environment. There are a great deal of obstacles in real environments, and so mobile robots can avoid obstacles by recognizing the exact position of each obstacle through the superposition of an ultrasonic sensor. The navigation system determines the direction of obstacle avoidance through an avoidance algorithm that uses virtual impedance, and lets users know the position of obstacles and the direction of the avoidance through the haptic device consisting of 5 vibration motors. By letting users know intuitionally, it lets the mobile robot precisely reach the reference point in unknown blind environment. This haptic device can implement a haptic navigation system through the tactile sensor data.

Man-Machine Interface Device for Dismantling Factory

  • Yi, Hwa-Cho;Park, Jung-Whan;Park, Myon Woong;Nam, Taek-Jun
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.248-255
    • /
    • 2017
  • In dismantling factories for recycling, it is important to input actual working data to a personal computer (PC) in order to monitor the work results and related recycling rate of the inputs. This should be performed with a keyboard, a mouse, or other devices. But when a worker is working in the factory, it could be bothersome or time consuming to go to the PC. Especially, workers who works at dismantling factories have a generally low education level are scared to use a PC, which could be used as a pretext for not using the PC. In some cases, data input is performed by a worker after the day's job. In this case, it could take additional time, the worker can make more mistakes, and the data could be unreliable. In this study, we developed a man-machine interface (MMI) device using a safety helmet. A joystick-like device, pushbuttons, and a radio frequency (RF) device for wireless communication is equipped in a safety helmet. This MMI device has functions similar to a PC mouse, and it has a long communication distance. RF is used because it consumes less battery power than Bluetooth. With this MMI device, workers need not go to a PC to input data or to control the PC, and they can control the PC from a long distance. The efficiency of PCs in a factory could be increased by using the developed MMI system, and workers at the dismantling factories could have less reluctance in using the PC.

Development of Head Mounted Display Interface System for Controlling Wireless Capsule Endoscope (무선 캡슐내시경 조종을 위한 머리부착형 디스플레이 인터페이스 시스템의 개발)

  • Young-Eun, Hwang;Young-Don, Son
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.417-423
    • /
    • 2022
  • The present study proposed a new interface system for capsule endoscopy by using head mounted display (HMD) device, which can control the orientation of the capsule endoscope with electromagnetic actuator (EMA) system. The orientation information of the HMD user was detected by the gyroscope sensor built into the device and then calculated to as an angle increment using Unity Engine compiler. The measured angle changes from the HMD were converted to the current values of the corresponding coils to be changed in the EMA system. Two experiments were designed to measure the accuracy and the intuitiveness of the HMD interface system. In the angle accuracy measurement, the capsule endoscope driven by HMD interface system showed the averaged errors of 0.68 degrees horizontally and 1.001 degrees vertically for given test angles. In the intuitiveness measurement, HMD interface system showed 1.33 times faster manipulation speed rather than the joystick interface system. In this respect, the HMD interface system for capsule endoscopy was expected to improve the overall diagnostic environment while maintaining comfort of patients and clinicians.