• Title/Summary/Keyword: Joun

Search Result 250, Processing Time 0.02 seconds

Forging Simulation of a Micro-Former Forging Process of an ABS Part (ABS 용 부품의 마이크로 포머단조공정 시뮬레이션)

  • Choi, I.S.;Yoo, S.W.;Park, S.G.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.165-169
    • /
    • 2007
  • In this study, the factors that have strong relationship with size effects on forging simulation are investigated and then a dimensionless concept is implemented into the forging simulator. The approach is applied to simulating a micro former forging process of which sequence involves a piercing process to make a hole of 0.7mm diameter of the product whose maximum diameter is 3mm. The simulated results are discussed to reveal the size effect in forging simulation.

  • PDF

Intelligent Simulation of Three-Dimensional Forging Process (삼차원 단조공정의 지능적 시뮬레이션)

  • Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.155-159
    • /
    • 2007
  • We conduct intelligent simulation of three-dimensional forging processes in this paper. A new remeshing technique is employed for this purpose. Not only the state variables including strain and strain-rate but also the geometrical features including die-material contact conditions and the characteristic lines or surfaces are taken into account during remeshing. The presented approach is applied to the Baden-Baden benchmark test example and its influence on the simulated results is discussed particularly in terms of the deformed shape with emphasis on the characteristic line.

  • PDF

Comparative Study on Mechanical Properties of forged and Machined Bushings for an Excavator Track Chain (굴삭기용 트랙체인 부품인 부설의 열간단조품과 절삭품의 기계적 성질 비교 분석)

  • Jang, S.M.;Jang, S.J.;Kim, H.T.;Joun, M.S.;Lee, H.M.;Choi, J.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.410-413
    • /
    • 2008
  • In this study, we compare the mechanical properties of forged and machined bushings for an excavator track chain. The manufacturing process is explained in detail together with the procedure of making the specimens. The longitudinal tensile strength and elongation and the radial ring compression strength are measured for this comparison. It has been shown that the forged is much better than the machined with regard to both longitudinal tensile strength and radial ring compression strength but that both are the same in terms of longitudinal elongation.

  • PDF

Factors affecting accuracy or grade of bevel gears during manufacturing (베벨기어 제조 공정에서 베벨기어의 정도 및 급수에 미치는 인자)

  • Jun, B.Y.;Eom, J.G.;Park, J.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.405-409
    • /
    • 2008
  • In this paper, factors affecting accuracy or grade of forged bevel gears are investigated in the experimental way. Two materials of SKD-11 and copper. two machining conditions and two machines of WIA-V50 and Roders-RFM600 are particularly investigated to reveal their effects on the grade of bevel gear forging dies in this study. It has been shown that the bevel gear grades are much affected by all the factors tested, revealing that it is of great significance to find the optimal machining process of die making to develop or manufacture a high precision bevel gear and that the bevel gear is degraded by one from the grade of its related die during forging.

  • PDF

In-plane Switching Liquid Crystal Cell with a Mixed Bent Electrode Structure for Fast Response Time

  • Ko, Tae-Woon;Kim, Jae-Chang;Lee, Joun-Ho;Choi, Hyun-Chul;Ji, Seung-Hoon;Choi, Jung-Min;Lee, Chul-Hun;Lee, Gi-Dong
    • Journal of Information Display
    • /
    • v.9 no.3
    • /
    • pp.12-15
    • /
    • 2008
  • A bent electrode structure is proposed in the super in-plane switching (S-IPS) liquid crystal (LC), as it can reduce the response time without loss of transmittance in the bright state. The electrode angle in each position of the bent electrode was optimized to simultaneously achieve high transmittance and fast response time. The electro-optical characteristics of the proposed LC cell structure were experimentally compared with those of the conventional cell. It was observed that the response time became over 8% shorter without loss of transmittance when the proposed bent structure was applied.

Quantitative analysis of effect of shrink fit in cold forging (냉간단조에서 금형 열박음 영향의 정량적 분석)

  • Li, Q.S.;Lee, M.C.;Jung, D.C.;Son, Y.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.119-123
    • /
    • 2009
  • In this paper, effects of major design parameters of cold forging dies on die mechanics are quantitatively investigated with emphasis on shrink fit using a thermoelastic finite element method. A ball-stud cold forging process found in a cold forging company is selected as a test process and the effects of die insert material, shrink fit, dimension of ring, partition of die inert and clamping force on effective stress and circumferential stress are analyzed.

  • PDF

Finite Element Analysis of a Screw Rolling Process (유한요소법을 이용한 나사전조 공정의 해석)

  • Jang, S.J.;Lee, M.C.;Han, S.S.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.128-131
    • /
    • 2009
  • In this paper, three-dimensional finite element analysis of screw rolling process of a long shaft bolt is conducted by using a rigid-plastic finite element method based metal forming simulator AFDEX 3D. A whole sequence of cold forming processes of a long shaft bolt composed of forging and screw rolling processes is simulated to reveal the mechanism of screw formation. A mesh density control function is applied near the major plastic deformation region to achieve computational efficiency.

  • PDF

Reason of Die Fracture in Automatic Multistage Cold Forging of a High Strength Ball-Stud (고강도 재료의 볼스타드 냉간자동단조에서 발생한 금형의 파괴 원인 분석)

  • Li, Q.S.;Eom, J.G.;Kim, Y.S.;Kim, E.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.124-127
    • /
    • 2009
  • In this paper, a longitudinal die insert fracture which occurred during cold forging of a high strength ball-stud with a sound die design nearly optimized empirically for relatively low strength material of SCM435 is introduced and the reason is revealed. A comparative study between SCM435 and ESW105 is quantitatively made using a thermoelastic finite element method for die structural analysis coupled with a forging simulator theoretically based on a rigid-plastic finite element method. It has been shown that the longitudinal die insert fracture caused from non-optimized value of shrink fit, emphasizing that the die optimal design is inevitable for cold forging of high strength materials.

  • PDF

Determination of Number of Blows in Hammer Forging by Finite Element Method (유한요소법을 이용한 해머단조 공정에서 타격 횟수의 결정)

  • Jang, S.M.;Kim, S.H.;Lee, M.C.;Cho, B.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.338-341
    • /
    • 2009
  • In this paper, three-dimensional finite element approach to determining the number of blows in hammer forging is presented. Energy efficiency which is a major factor affecting the number of blows in hammer forging is assumed to decrease linearly as die-material contact area increases. The approach is applied to predicting the number of blows in counterblow hammer forging of large crank shaft for medium sized ship engine.

  • PDF

Three-dimensional finite element analysis of forging processes with back pressure exerted by spring force (스프링 힘에 의한 배합부가 단조 공정의 3차원 유한요소해석)

  • Jang, S.M.;Kim, M.C.;Lee, M.C.;Jun, B.Y.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.470-473
    • /
    • 2009
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

  • PDF