• 제목/요약/키워드: Joule effect

검색결과 77건 처리시간 0.025초

장류를 이용하여 제조한 소스류의 총균 및 Bacillus cereus 포자에 대한 줄가열 및 초고압 처리 효과 (Effect of Joule Heating and Hydrostatic Pressure on Reduction of Total Aerobes and Spores of Bacillus cereus in Sauces Prepared with Traditional Korean Fermented Foods)

  • 조은지;오세욱;허병석;홍상필
    • 한국식품영양과학회지
    • /
    • 제43권10호
    • /
    • pp.1619-1626
    • /
    • 2014
  • 마리네이드, 간장소스, 된장소스 및 고추장소스를 대상으로 총균수 및 Bacillus cereus 접종포자에 대해 초고압, 줄가열, 항균물질에 단독처리나 hurdle 복합처리에 의한 저감효과를 분석하였다. 줄가열 처리는 된장 및 고추장소스의 총균과 접종포자에 대해서 1.0~2.0 log 범위의 저감효과를 나타내었다. 한편 J($85^{\circ}C$), A(EtOH 3.0%) 및 P(550 Mpa, 5분)를 허들로 설정하였을 경우 된장소스의 총균수는 JA 처리구가 0.35 log, JP 처리구가 0.92 log 및 JAP 처리구가 1.21 log 감소하였고, 고추장소스의 총균수는 JA 처리구가 1.26 log, JP 처리구가 1.7 log 및 JAP 처리구가 1.47 log 감소하였다. 포자의 경우 된장소스는 AP 처리구가 0.50 log, JP와 JAP 처리구는 각각 1.42 log 및 1.38 log로 감소 효과가 증가하였고, 고추장소스는 AP 처리구가 0.47 log, JA 처리구가 3.3 log, JP와 JAP 처리구가 모두 3.45 log만큼 크게 감소하였다. 상기 소스의 총균과 포자에 대한 처리구는 $30^{\circ}C$에서 8주간 저장 시 대조구 대비 유사하거나 낮은 수준을 유지하였다. 따라서 소스류 중에서 고추장소스와 된장소스는 줄가열과 초고압을 연계한 허들처리를 통해 총균수와 B. cereus 포자를 제어할 수 있을 것으로 기대된다.

보텍스튜브에서 랭퀴-힐쉬효과와 줄-톰슨효과가 에너지분리에 미치는 영향 (The Influence of Ranque-Hilsch Effect and Joule-Thomson Effect to Energy Separation in a Vortex Tube)

  • 유갑종;방창훈;김병하
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.703-710
    • /
    • 2000
  • Energy separation characteristic occurring in a counterflow vortex tube was studied experimentally, where air, $C_2$, and R22 were used as working fluids. The experiments were carried out with pressure ratio from 3 to 8 and cold mass fraction(y) from 0.1 to 0.9. As results, Ranque-Hilsch effect showed different results from adiabatic expansion process. Temperature difference in vortex tube outlet was affected by Joule-Thomson effect as well as Ranque-Hilsch effect. The more effective the energy separation was, the more increased the entropy in the cold oulet of vortex tube was.

  • PDF

Joule열이 Sn-3.5Ag 플립칩 솔더범프의 Electromigration 거동에 미치는 영향 (Effect of Joule Heating on Electromigration Characteristics of Sn-3.5Ag Flip Chip Solder Bump)

  • 이장희;양승택;서민석;정관호;변광유;박영배
    • 한국재료학회지
    • /
    • 제17권2호
    • /
    • pp.91-95
    • /
    • 2007
  • Electromigration characteristics of Sn-3.5Ag flip chip solder bump were analyzed using flip chip packages which consisted of Si chip substrate and electroplated Cu under bump metallurgy. Electromigration test temperatures and current densities peformed were $140{\sim}175^{\circ}C\;and\;6{\sim}9{\times}10^4A/cm^2$ respectively. Mean time to failure of solder bump decreased as the temperature and current density increased. The activation energy and current density exponent were found to be 1.63 eV and 4.6, respectively. The activation energy and current density exponent have very high value because of high Joule heating. Evolution of Cu-Sn intermetallic compound was also investigated with respect to current density conditions.

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park;Sung-Ho Hahm
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.425-431
    • /
    • 2023
  • An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.

CCCC법에 의한 태양전지용 다결정 실리콘 잉고트의 제조 (Fabrication of poly-crystalline silicon ingot for solar cells by CCCC method)

  • 신제식;이동섭;이상목;문병문
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.94-97
    • /
    • 2005
  • For the fabrication of poly-crystalline silicon ingot, CCCC (Cold Crucible Continuous Casting) method under a high frequency alternating magnetic field, was utilized in order to prevent crucible consumption and ingot contamination and to increase production rate. In order to effectively and continuously melt and cast silicon, which has a high radiation heat loss due to the high melting temperature and a low induction heating efficiency due to a low electric conductivity, Joule and pinch effects were optimized. Throughout the present investigation, poly-crystalline Si ingot was successfully produced at the casting speed of above 1.5 mm/min under a non-contact condition.

  • PDF

입상 탄소 발열체의 열원을 이용한 온풍기의 적용에 관한 연구 (A Study on Application of Warm Air Circulator by Using the Carbon Heating Element with Particle Type)

  • 배강열;이광성;공태우;정한식;정효민;정희택
    • 동력기계공학회지
    • /
    • 제7권4호
    • /
    • pp.31-37
    • /
    • 2003
  • This paper is a study on application of warm air circulator by using the carbon heating element with particle type. The main variables are the input current and amount of carbon heating source for experimental characteristics. The experimental results are obtained as follows. As the input current and temperature are increased, the resistance of heat source is decreased about $20{\sim}25%$ by the effect of negative resistance. As the amount of heating source is small, Joule heat is large with the input current. When the amount of heating source is 300 and the input current is 15A, the value of Joule heat is about 4604.6kJ/h. The heat production efficiency of carbon heating source is larger about 10% than the sheath heater.

  • PDF

쥴톰슨냉동기의 열교환기 성능에 관한 연구 (Study of the Performance of the Fin-Tube Heat Exchanger of the Miniature Joule-Thomson Refrigerator)

  • 홍용주;김효봉;박성제;최영돈
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권1호
    • /
    • pp.55-59
    • /
    • 2009
  • Miniature Joule-Thomson refrigerators have been widely used for rapid cooling of infrared detectors, probes of cryosurgery, thermal cameras, missile homing head and guidance system, due to their special features of simple configuration, compact structure and rapid cool-down characteristics. The thermodynamic performance of J-T refrigerator highly depends on the hydraulic and heat transfer characteristics of the recuperative heat exchanger. The typical recuperative heat exchanger of the J-T refrigerator has the double helical tube and fin configuration. In this study, effectiveness-NTU approach was adopted to predict the thermodynamic behaviors of the heat exchanger for the J-T refrigerator. The thermodynamic properties from the REFPROP were used to account the real gas effects of the gas. The results show the effect of the operating conditions on the performance of the heat exchanger and refrigerator for the given heat exchanger. The influences of mass flow rate and the supply pressure on the effectiveness of heat exchanger and the ideal cooling capacity are discussed in details.

SF6/N2 혼합기체의 DC 플라즈마 특성 분석 (The Analysis of DC Plasmas Characteristics on SFSF6 and N2 Mixture Gases)

  • 소순열
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1485-1490
    • /
    • 2014
  • $SF_6$ gas has been used for power transformers or gas insulated switchgears, because it has the superior insulation property and the stable structure chemically. It has been, however, one of global warming gases and required to reduce the its amount. Some papers have reported that its amount could be reduced by mixing with other gases, such as $N_2$, $CF_4$, $CO_2$ and $C_4F_8$ and their mixture gases would cause the synergy effect. In this paper, we investigated the characteristics of DC plasmas on $SF_6$ mixture gases with $N_2$ at atmospheric pressure. $N_2$ gas is one of cheap gases and has been reported to show the synergy effect with mixing $SF_6$ gas, even though $N_2$ plasmas have electron-positive characteristics. 38 kinds of $SF_6/N_2$ plasma particles, which consisted of an electron, two positive ions, five negative ions, 30 excitation and vibration particles, were considered in a one dimensional fluid simulation model with capacitively coupled plasma chamber. The results showed that the joule heating of $SF_6/N_2$ plasmas was mainly caused by positive ions, on the other hand electrons acted on holding the $SF_6/N_2$ plasmas stably. The joule heating was strongly generated near the electrodes, which caused the increase of neutral gas temperature within the chamber. The more $N_2$ mixed-ratio increased, the less joule heating was. And the power consumptions by electron and positive ions increased with the increase of $N_2$ mixed-ratio.

Nanosheet FETs에서의 효과적인 전열어닐링 수행을 위한 기계적 안정성에 대한 연구 (Investigation of Mechanical Stability of Nanosheet FETs During Electro-Thermal Annealing)

  • 왕동현;박준영
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.50-57
    • /
    • 2022
  • Reliability of CMOS has been severed under aggressive device scaling. Conventional technologies such as lightly doped drain (LDD) and forming gas annealing (FGA) have been applied for better device reliability, but further advances are modest. Alternatively, electro-thermal annealing (ETA) which utilizes Joule heat produced by electrodes in a MOSFET, has been newly introduced for gate dielectric curing. However, concerns about mechanical stability during the electro-thermal annealing, have not been discussed, yet. In this context, this paper demonstrates the mechanical stability of nanosheet FET during the electro-thermal annealing. The effect of mechanical stresses during the electro-thermal annealing was investigated with respect to device design parameters.