Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.1.8

Investigation of Mechanical Stability of Nanosheet FETs During Electro-Thermal Annealing  

Wang, Dong-Hyun (School of Electronics Engineering, Chungbuk National University)
Park, Jun-Young (School of Electronics Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.1, 2022 , pp. 50-57 More about this Journal
Abstract
Reliability of CMOS has been severed under aggressive device scaling. Conventional technologies such as lightly doped drain (LDD) and forming gas annealing (FGA) have been applied for better device reliability, but further advances are modest. Alternatively, electro-thermal annealing (ETA) which utilizes Joule heat produced by electrodes in a MOSFET, has been newly introduced for gate dielectric curing. However, concerns about mechanical stability during the electro-thermal annealing, have not been discussed, yet. In this context, this paper demonstrates the mechanical stability of nanosheet FET during the electro-thermal annealing. The effect of mechanical stresses during the electro-thermal annealing was investigated with respect to device design parameters.
Keywords
Electro-thermal annealing; Joule heat; Mechanical stress; Nanosheet FET; Reliability; Self-healing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Xie, J. Xu, and Y. Taur, IEEE Trans. Electron Devices, 59, 1569 (2012). [DOI: https://doi.org/10.1109/TED.2012.2191556]   DOI
2 A. B. Sachid, M. C. Chen, and C. Hu, IEEE Trans. Electron Devices, 64, 1861 (2017). [DOI: https://doi.org/10.1109/TED.2017.2664798]   DOI
3 S. Ogura, P. J. Tsang, W. W. Walker, D. L. Critchlow, and J. F. Shepard, IEEE J. Solid-State Circuits, 15, 424 (1980). [DOI: https://doi.org/10.1109/JSSC.1980.1051416]   DOI
4 J. Y. Park, D. I. Moon, G. B. Lee, and Y. K. Choi, IEEE Trans. Electron Devices, 67, 777 (2020). [DOI: https://doi.org/10.1109/TED.2020.2964846]   DOI
5 M. Jurczak, N. Collaert, A. Veloso, T. Hoffmann, and S. Biesemans, Proc. 2009 IEEE International SOI Conference (IEEE, Foster City, USA, 2009) pp. 1-4. [DOI: https://doi.org/10.1109/SOI.2009.5318794]   DOI
6 Y. Choi, K. Lee, K. Y. Kim, S. Kim, J. Lee, R. Lee, H. M. Kim, Y. S. Song, S. Kim, J. H. Lee, and B. G. Park, Solid State Electron., 164, 107686 (2019). [DOI: https://doi.org/10.1016/j.sse.2019.107686]   DOI
7 N. Loubet, T. Hook, P. Montanini, C. W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S. C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M. H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, Proc. 2017 Symposium on VLSI Technology (IEEE, Kyoto, Japan, 2017) p. 2158. [DOI: https://doi.org/10.23919/VLSIT.2017.7998183]   DOI
8 L. Cai, W. Chen, G. Du, X. Zhang, and X. Liu, IEEE Trans. Electron Devices, 65, 2647 (2018). [DOI: https://doi.org/10.1109/TED.2018.2825498]   DOI
9 D. V. Shtansky, V. Kiryukhantsev-Korneev, A. N. Sheveyko, B. N. Mavrin, C. Rojas, A. Fernandez, and E. A. Levashov, Surf. Coat. Technol., 203, 3595 (2009). [DOI: https://doi.org/10.1016/j.surfcoat.2009.05.036]   DOI
10 C. Hu, Proc. IEEE, 81, 682 (1993). [DOI: https://doi.org/10.1109/5.220900]   DOI
11 S. Y. Lee, S. M. Kim, E. J. Yoon, C. W. Oh, I. Chung, D. Park, and K. Kim, IEEE Trans. Nanotechnol., 2, 253 (2003). [DOI: https://doi.org/10.1109/TNANO.2003.820777]   DOI
12 N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, IEEE Electron Device Lett., 27, 383 (2006). [DOI: https://doi.org/10.1109/LED.2006.873381]   DOI
13 K. Onishi, C. S. Kang, R. Choi, H. J. Cho, S. Gopalan, R. E. Nieh, S. A. Krishnan, and J. C. Lee, IEEE Trans. Electron Devices, 50, 384 (2003). [DOI: https://doi.org/10.1109/TED.2002.807447]   DOI
14 K. S. L ee a nd J. Y. P ark, Electronics, 10, 1395 (2021). [DOI: https://doi.org/10.3390/electronics10121395]   DOI
15 H. A. Chaliyawala, G. Gupta, P. Kumar, G. Srinivas, Siju, and H. C. Barshilia, Surf. Coat. Technol., 276, 431 (2015). [DOI: https://doi.org/10.1016/j.surfcoat.2015.06.032]   DOI
16 S. Abe, Y. Miyazawa, Y. Nakajima, T. Hanajiri, T. Toyabe, and T. Sugano, Proc. 2009 10th International Conference on Ultimate Integration of Silicon (IEEE, Aachen, Germany, 2009) pp. 329-332. [DOI: https://doi.org/10.1109/ULIS.2009.4897602]   DOI
17 V. Senez, T. Hoffmann, A. Armigliato, and I. D. Wolf, Smart Mater. Struct., 15, S47 (2006). [DOI: https://doi.org/10.1088/0964-1726/15/1/009]   DOI
18 H. Issele, D. Mercier, G. Parry, R. Estevez, L. Vignoud, and C. Olagnon, e-J. Surf. Sci. Nanotechnol., 10, 624 (2012). [DOI: https://doi.org/10.1380/ejssnt.2012.624]   DOI
19 K. Tapily, J. E. Jakes, D. S. Stone, P. Shrestha, D. Gu, H. Baumgart, and A. A. Elmustafa, J. Electrochem. Soc., 155, H545 (2008). [DOI : https://doi.org/10.1149/1.2919106]   DOI
20 S. Chatterjee, B. N. Chowdhury, A. Das, and S. Chattopadhyay, Semicond. Sci. Technol., 28, 125011 (2013). [DOI: https://doi.org/10.1088/0268-1242/28/12/125011]   DOI