• Title/Summary/Keyword: Joseong

Search Result 10, Processing Time 0.031 seconds

'Joseong', a New Early-Heading Forage Triticale Cultivar for Paddy Field of Double Cropping (이모작 재배에 적합한 조숙성 조사료용 트리티케일 신품종 '조성')

  • Han, Ouk-Kyu;Park, Tae-Il;Park, Hyung-Ho;Song, Tae-Hwa;Ju, Jung-Il;Jeung, Jae-Hyun;Kang, Sung-Joo;Kim, Dae-Ho;Choi, Hong-Jib;Park, Nam-Geon;Kim, Kee-Jong;Hwang, Jong-Jin;Baek, Seong-Beum;Kwon, Young-Up
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.3
    • /
    • pp.193-202
    • /
    • 2012
  • 'Joseong', a winter forage triticale cultivar (X Triticosecale Wittmack), was developed by the breeding team at the Department of Rice and Winter Cereal Crop, NICS, RDA in 2010. The cultivar 'Joseong' was selected from the cross FAHAD_5/RHINO1R.1D 5+10 5D'5B'//FAHAD_5 by CIMMYT (Mexico) in 1992. Subsequent generations were handled in pedigree selection program at Mexico from 1993 to 1998, and a line 'CTSS92Y-A-4Y-0M-5Y-0B' was selected for earliness and good agronomic characteristics. After preliminary and advance yield test in Korea for 2 years, the line designated as a line name of 'Iksan26'. The 'Iksan26' was subsequently evaluated for earliness and forage yield in 7 different locations such as Jeju, Iksan, Cheongwon, Yesan, Naju, Daegu, and Jinju from 2008 to 2010 and finally named as 'Joseong'. The cultivar 'Joseong' has characteristics of dark green leaf, yellow culm and spike, and large grain of yellowish brown color. The heading date of cultivar 'Joseong' was April 24, which was 5 days earlier than that of check cultivar 'Shinyoung'. It showed better tolerance or resistance to lodging, wet injury, powdery mildew, and leaf rust than those of the check cultivar 'Shinyoung'. The average forage dry matter yield of cultivar 'Joseong' at milk-ripe stage was 14.5 MT $ha^{-1}$, which was lower than 16.5 MT $ha^{-1}$ of the check cultivar 'Shinyoung'. The silage quality of 'Joseong' (5.3%) was lower to the check cultivar 'Shinyoung' (6.0%) in crude protein content, while was 2.1% superior to the check cultivar 'Shinyoung' (61.9%) in TDN (total digestible nutrients). It showed 5.1 MT $ha^{-1}$ of grain yield, which was 40% higher than that of the check cultivar 'Shinyoung' (3.65 MT $ha^{-1}$). This cultivar is recommended for fall sowing crop in the area where daily minimum mean temperatures are averaged higher than $-10^{\circ}C$ in January, and as a winter crop using whole crop forage before planting rice in around Korea.

Double Cropping Productivity of Winter and Summer Forage Crops in Yeongseo of Gangwon Province (강원 영서지역에서 겨울 및 여름 사료작물 이모작 시 생산성)

  • Son, Beom Young;Won, Yong Jae;Kim, Sung Kook;Kim, Min Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.2
    • /
    • pp.71-76
    • /
    • 2021
  • In order to establish optimal double cropping system for getting the maximum annual productivity, we investigated annual fresh and dry yields of winter forage crops (WFC), Italian ryegrass (IRG) 'Kowinearly', triticale 'Joseong' and summer forage crop (SFC), 'Jonong' and 'Jowoo' as whole crop silage rice in the paddy field of Yeongseo of Gangwon Province. The double cropping of each crops was applied with 2 standard cultivation method of WFC and SFC from 2018 to 2020. For the WFC, the average percentage of dry matter (29.6%) of IRG 'Kowinearly' was lower than that (35.5%) of triticale 'Joseong'. The average fresh matter yield of IR G 'Kowinearly' was 2,662kg/10a that there was no significant difference from the 2,836kg/10a of triticale 'Joseong'. The average dry matter yield (996kg/10a) of triticale 'Joseong' was more than that (696kg/10a) of IRG 'Kowinearly'. For the summer forage crops, the average percentage of dry matter of whole crop silage rice, 'Jonong' was 34.5% that there was no significant difference from the 35.0% of 'Jowoo'. The average fresh matter yield (5,367kg/10a) of 'Jowoo' was more than that (3,966kg/10a) of 'Jonong'. And the average dry matter yield (1,936kg/10a) of 'Jowoo' was more than that (1,433kg/10a) of 'Jonong'. The total maximum dry matter yield was 2,982kg/10a with the combination of the WFC triticale, 'Joseong' and the SFC whole crop silage rice, 'Jowoo'. In conclusion, the combination of crops that can obtain the maximum yield of high quality forage for double cropping is sowing the WFC triticale, 'Joseong' in mid-October, harvesting 'Joseong' around the end of May and then SFC whole crop silage rice, 'Jowoo', to be transplanted in early June.

Investigation of the location of Jagiso eunchon in Goheung-hyeon and review the characteristics of Undae-ri kiln (고흥현 자기소(磁器所) 은촌(犾村)의 위치 탐색과 운대리 가마터 성격 검토)

  • SUNG Yungil
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.72-92
    • /
    • 2023
  • As described above, the location of Jagiso eunchon in Goheung-hyeon and the nature of Undae-ri kiln site were examined. Goheung-hyeon's administrative agency was moved to Joyang-hyeon, which is now Joseong-myeon, Boseong-gun in 1395. Therefore, Goheung-hyeon Jagiso Eunchon in Sejongsillok Jiriji corresponding to 1424~1432 should be found in the west of Joseong-myeon, Boseong, where the administrative agency was moved in 1395. Among the four boundaries of Goheung-hyeon recorded in the 『Sejongsillok』 Jiriji, it is recorded as 2-ri by the sea in the south and 8-ri by Nakan in the east. If the current Goheung-hyeon is Goheung-hyeon's administrative agency in the Sejongsillok Jiriji Records Compilation Period, it cannot be the boundary the south and east mentioned above. This is because it cannot be 2-ri from the current Goheung-eup to the sea in the south, and Nakan is close to the north, not the east, as recorded. However, it has already been suggested that Joyanghyeonseong(朝陽縣城), located in Gonae Village, Ucheon-ri, Josung-myeon, Boseonggun is an Goheunghyeon's administrative agency. And if the four-way boundary of Goheung-hyeon was converted into the current distance unit based on this place(Joyanghyeonseong, 朝陽縣城), an approximate result could be obtained even if it did not exactly match. Therefore, it is highly likely that Goheung-hyeon's administrative agency, which was moved to Joyang-hyeon, Boseong in 1395, is Gonae Village, Ucheon-ri, JoSeong-myeon, Boseong. Jagiso eunchon(犾村) in Goheung-hyeon can be interpreted as a "dog-shouting village." It is thought to be a meaning structure of "animal + sound". A place name thought to have the same structure was identified in Jeongheung-ri, west of Ucheon-ri, Joseongmyeon, Boseong. It is the name of a village called Hoeum-dong(虎吟洞), and it is interpreted as the sound of a tiger or the bark of a tiger, which is the same as the meaning structure of Eunchon. However, there is Gaesan Village in the south of Hoeum-dong, and a Buncheong ware kiln site was identified around it. At this kiln site, a fragment of carved Buncheong ware engraved with the character "Eon", which corresponds to the right stroke of the character "Seom (贍)" in the name "Naeseom (內贍)" was identified. A small amount of Buncheong ware and Joseon celadon pieces were also identified. It can be seen that the Buncheong ware paid to the government was made by checking the Buncheong ware with the government name engraved on it. On the west side of Joyanghyeonseong Fortress in Ucheon-ri, joseong-myeon, Boseong, which was the administrative agency of Goheung-hyeon and the area around the Gaesan Buncheong ware kiln site in Jeongheung-ri, where the Buncheong ware paid to the government was, is thought to be Jagiso Eunchon, Goheung-hyeon. Jagiso and Dogiso are located in the four directions based on the administrative agency. Naturally, the location of Jagiso and Dogiso is also determined on where the administrative agency of Hyeon is. Since the Goheung-hyeon's administrative agency in the early Joseon Dynasty was moved to Ucheon-ri, joseong-myeon, Boseong-myeon, it is necessary to naturally find Jagiso and Dogiso in Boseong. In addition, regarding the nature of the kiln site in Undae-ri, the aspects of the excavated relics were considered. As a result, it is believed that the Undae-ri kiln site functioned as a jagiso in Heungyang-hyeon from February 1441 to the 1470s. If so, the "Ye" Buncheong ware, which was collected around Undae-ri kiln No. 7, could be naturally understood.

Studies on cropping system for year-round forage crops production

  • Kang, Heonil;Lee, Donghyun;Han, Sangcheol;Choi, Insoo;Yun, Eulsoo;Lee, Jongki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.333-333
    • /
    • 2017
  • This study was conducted to establish of cropping system for year-round forage crops production in east-southern part of Korea and investigated their productivity and feed values. Cropping systems were tested in experiment using oat (cv. Highspeed and Darkhorse) in spring and autumn season, corn (cv. Kwangpyeongok) and sorghum (ss-450) in summer season and rye (cv. Gogu) and triticale (cv. Joseong) in winter season. Considering the forage productivity and feed value such as acid detergent fiber (ADF), neutral detergent fiber (NDF) and total digestive nutrients (TDN), this result suggest that three cropping system for year-round forage crops production. The combinations with triticale (winter), corn or sorghum (summer) and oat (autumn) were would be suitable ones. And also the combinations with rye (winter), corn or sorghum (summer) and oat (autumn) were would be suitable. If forage crops cultivation was started in spring season, the combinations with oat (spring), oat (autumn), triticale or rye (winter), corn or sorghum (summer) and oat (autumn) were would be appropriable. For the more suitable cropping system, we are proceeding on verification experiment of year-round forage crops.

  • PDF

Effects of the autumn sowing date on grain yield and feed value of winter triticale (X. Triticosecale Wittm.) in the southeast of the Gyeongbuk province

  • Tomple, Byamungu Mayange;Jo, Ik Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.439-449
    • /
    • 2019
  • The purpose of this research was to evaluate the effects of different sowing dates on growth characteristics, seed productivity and feed value of triticale in Gyeongbuk province. The experiment was conducted from September 2015 to July 2017, using triticale "Joseong" cultivar of 150 kg of seed/ha and sown at 10 days intervals from different sowing dates ($30^{th}$ September, $10^{th}$, $20^{th}$ and $30^{th}$ October) in 2015 and 2016, respectively. The emergence date in the autumn season was 8 - 18 days after sowing in 2015 and 2016. The heading, flowering and maturing periods were the fastest on $30^{th}$ September compared to the other sowing dates. The average number of stem and panicle per unit area were 409.3 - 428.5 and 330.9 - 334.0 on $30^{th}$ September and $10^{th}$ October, which were higher than those sown on $20^{th}$ and $30^{th}$ October, 2015 and 2016, respectively (p < 0.05), and the average number of grain and kernel weight was 47.1 - 48.1 and 2.2 - 2.3 g on $30^{th}$ September and $10^{th}$ October, which were higher than the late sowing dates. In case of seed yield as affected by different sowing dates, the highest yield was found on the sowing plot of late September and $10^{th}$ October, which were 5,680 and 5,918 kg/ha, respectively (p < 0.05). However, the average CP content was 10.7%, CF content was 2.8% and TDN content was 85.3. In conclusion, $30^{th}$ September and $10^{th}$ October were the appropriate sowing dates for a forage self-sufficiency system in Gyeongbuk.

Effect of Harvesting Time on Hay and Haylage Feed Value and Quality of Triticale (X Triticosecale Wittmack)

  • Jisuk Kim;Kyungyoon Rha;Myoung Ryoul Park;Yul-Ho Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.322-322
    • /
    • 2022
  • Hay and haylage as forage are increasing in preference for cattle feed. Triticale (X Triticosecale Wittmack) is growing up as a forage crop due to its high production and feed value in South Korea. It is difficult to determine the harvesting stage of triticale for producing hay or haylage with the highest forage value and quality because feed and nutritional value by growth stages of triticale were not known in South Korea yet. In this study, we analyzed forage values, pH, and contents of organic acid, to confirm feed value and quality by growth stages of triticale. The triticale 'Joseong' was sown in the spring of 2022. The sample was prepared in 5 stages: seedling stage, booting stage, heading stage, 10 days after heading, and 20 days after heading. The triticale was dried under 10% and to about 50% moisture for hay and haylage respectively, and then both triticales were fermented anaerobically at room temperature for 40 days. The pH value in all hay and haylage became lower as the triticale was grown up, although the pH value of all triticale hays and haylages ranged between 7.05-5.68. The content of lactic acid in all triticale hays was almost meaningless. The contents in the haylage of the seedling stage were the highest (2.39%) among the haylages, even though those of 20 days after the heading stage (1.67%) were the lowest, which showed a similar tendency with pH value. Conclusionally, the results implied that the feed value and quality of triticale haylage were affected by harvesting time but not hay.

  • PDF

Effects of Sowing and Harvesting Time on Feed Value and Quality of Triticale (X Triticosecale Wittmack)

  • Jisuk Kim;Kyungyoon Rha;Myoung Ryoul Park;Yul-Ho Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.144-144
    • /
    • 2022
  • The amount of required forage is increasing by 20% every year in South Korea, but the cultivation area for forage production is limited. The yield ability of triticale forage is the highest among the winter forage crops including rye and the crop has cold tolerance within the average low temperature of -10℃ in January. Therefore, this study analyzed effects of sowing and harvesting times on feed value and quality for efficiently using and supplying triticale as livestock feed. Seed of the triticales, 'Joseong' was sown in 2021 fall (October) and 2022 spring (March). The triticales were harvested according to growth stages: seedling stage, booting stage, heading stage, 10 days after heading, and 20 days after heading. Moisture contents of each harvested triticales were adjusted to about 60%, and then the triticales were fermented for 40 days at room temperature under anaerobic conditions as silage. We have analyzed pH and organic acid to determine the feed value and quality of each silage. The contents of lactic acid in silage ofthe triticale harvested at the seedling stage of both fall and spring-sown (1.61%, 1.63%) were the highest among all of the silages; the booting stage (0.75%, 1.33%), the heading stage (0.50%, 0.69%), 10 days after the heading stage (0.31%, 0.42%), and 20 days after heading stage (0.22%, 0.40%). Such as the contents of lactic acid in the silages, and the pH value of the silages The pH value in both the fall- and spring-sown became lower as the triticale was grown up: seedling stage (7.05, 6.85), booting stage (6.21, 6.75), heading stage (6.18, 6.28), 10 days after heading stage (6.22, 6.17), and 20 days after heading stage (6.15, 5.81). Taken together, the results showed that the feed value and quality of triticale silage were more affected by harvesting time than sowing time.

  • PDF

Effect of Sowing and Harvesting Dates on Forage Productions and Feed Values of Rye and Triticale in Youngnam Mountain Area (영남산간지역에서 호밀과 트리티케일의 파종 및 수확시기가 생산성과 사료가치에 미치는 영향)

  • Lee, Hyuk-Jun;Han, Ouk-Kyu;Joo, Young-Ho;Lee, Seong-Shin;Paradhipta, Dimas Hand Vidya;Ku, Ja-Hwan;Min, Hyeong-Gyu;Oh, Jung-Sik;Kim, Sam-Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.1
    • /
    • pp.57-65
    • /
    • 2020
  • This study was conducted to investigate the effect of sowing and harvesting dates on agronomic characteristics and feed values of rye and triticale at Sanchoeng, South Korea. The experimental design consisted of the different sowing and harvesting dates as follows; rye (Secale cereale L., cv. Gogu) of sowing (October 15, 25, and November 5) in 2015 and harvesting (April 20, May 1 and May 11) in 2016, and triticale (X Triticosecale, cv. Joseong) of sowing (October 15, 25, and November 5) in 2015 and harvesting (May 18, 28, and June 7) in 2016. In rye, fresh and dry matter (DM) yields increased (p<0.05) with the delayed-harvesting date. Crude protein (CP) content and relative feed value (RFV) decreased (p<0.05) with the delayed-harvesting date, but neutral detergent fiber (NDF) content increased (p<0.05). In triticale, fresh and dry matter (DM) yields increased (p<0.05) with the delayed-harvesting date. The CP content decreased (p<0.05) with the delayed-harvesting date, but NDF content and RFV increased (p<0.05). This study concluded that rye sown in the middle of October then harvested in early May, and the triticale sown at the end of October then harvested at the end May are recommended to increase dry matter yield and feed value.

Effects of Sowing and Harvesting Times on Feed Value and Functional Component of Triticale (x Triticosecale Wittmack) (트리티케일 파종시기 및 수확시기가 사일리지 사료가치와 기능성 성분에 미치는 영향)

  • Jisuk Kim;Kyungyoon Ra;Yul-Ho Kim;Myoung Ryoul Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.319-325
    • /
    • 2022
  • Triticale forage has the highest yield of all winter forage crops, including rye, and a cold tolerance within an average low temperature of -10℃ in January. Therefore, this study analyzed the effects of sowing and harvesting times on the feed value and functional components of triticale to optimize the use and supply of triticale as livestock fee Room temperature' can vary widely with climate, season, and time of day. In order to clearly state the conditions of the study in a manner that facilitates replication by other researchers, please consider using an approximate temperature range instead. Seeds of the triticale 'Joseong' were sown during the fall of 2021 (October 20th) and spring of 2022 (March 7th). The triticale was harvested at the following growth stages: seedling stage, booting stage, heading stage, 10 days after heading, and 20 days after heading. The moisture content of each harvested triticale was adjusted to approximately 60%, and the triticale was fermented for silage for 40 days at ambient temperature under anaerobic conditions. We measured the pH and organic acid content of each silage to determine the feed value and functional component. The lactic acid content of the triticale silage harvested at the seedling stage sown in both fall and spring (1.61%, 1.63%) was the highest among all the silages. The octacosanol content in the silages of both fall-sown and spring-sown triticale harvested at the seedling stage (0.38, 0.27 mg/ml) was the highest. Overall, the results revealed that harvesting time had a greater impact on the feed value and functional components of triticale silage than sowing time.

Double Cropping Productivity of Main Whole-Crop Silage Rice and Winter Feed Crops in the Central Plains of Korea (중부 평야지에서 사료용 벼와 주요 동계사료작물 이모작 시 생산성)

  • Ahn, Eok-Keun;Jeong, Eung-Gi;Park, Hyang-Mi;Jung, Kuk-Hyun;Hyun, Ung-Jo;Ku, Ja-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.311-322
    • /
    • 2019
  • In order to establish an optimal double cropping system to obtain the maximum annual quantity, we investigated the annual productivity of whole-crop silage (WCS) rice, Jowoo (Jw), Yeongwoo (Yw), and Mogwoo (Mw), and winter feed crops (WFC), Italian ryegrass (IRG), Greenfarm (GF), rye Gogu (GU), and triticale Joseong (JS), in paddy fields of the central plains of Korea. From 2016 to 2019, each crop was subjected to two standard cultivation methods: WCS rice and WFC optimal. Using the WCS optimal mode, the average dry matter yield (DMY) of WCS rice, early flowering Jw, was 15.8 tons/ha and 21.0 for the mid-late heading Yw; there was no significant difference compared to the 19.2 tons/ha late-flowering Mw (p<0.01). The WFC were not significantly different between GF (3.2 tons/ha) and GU (4.5) sown on September 23rd, while JS was the highest at 12.6 tons/ha (p<0.001). There was a significant difference in the order of JS (16.6 tons/ha) > GF (10.5) > GU (4.7)(p<0.001) sown on October 11th. For JS sown on October 31st, the DMY was 11.8 tons/ha, which was significantly higher than that of the other two crops (p<0.05). Except for rye GU, DMY was the highest when sown on October 11th. For WFC optimal mode, the average DMY of JS was the highest at 18.3 tons/ha, which was significantly different from that of GF (10.9) and GU (9.6) (p<0.001). The DMY of WCS rice transplanted on May 10th was the highest at 23.0 tons/ha in Mw, which was not significantly different from that of Yw (21.4) but significantly different from that of Jw (15.9) (p<0.05). On transplanting on May 25th, the DMY of Mw was the highest at 24.2 tons/ha; this was not significantly different from that of Yw (20.7), but it was significantly different from that of Jw (18.6) (p<0.05). When transplanted on June 11th, the DMY was 21.3 tons/ha in Yw, which was significantly higher than the DMY of other two cultivars, Jw and Mw (p<0.05). For the WCS rice-WFC double cropping, the total annual DMY was 33.6 tons/ha with the combination of the WCS rice, Yw, and the triticale JS for WCS optimal mode. Meanwhile, the total annual DMY was 39.6 tons/ha with the combination of the triticale JS and the WCS rice, Yw, for WFC optimal mode. In conclusion, the strategies for obtaining the maximum yield of high-quality forage for WCS rice-WFC, WFC-WCS rice double cropping are as follows: 1) cultivation centered on the optimal mode of WFC, and 2) sowing the WFC, triticale JS in mid-October, harvesting the crops around the end of May and transplanting the WCS rice, Yw, in early June to obtain the maximum DMY of 39.6 tons/ha.