• Title/Summary/Keyword: Joist

Search Result 17, Processing Time 0.017 seconds

Behavior of Concrete/Cold Formed Steel Composite Beams: Experimental Development of a Novel Structural System

  • Wehbe, Nadim;Bahmani, Pouria;Wehbe, Alexander
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • The use of light-gauge steel framing in low-rise commercial and industrial building construction has experienced a significant increase in recent years. In such construction, the wall framing is an assembly of cold-formed steel (CFS) studs held between top and bottom CFS tracks. Current construction methods utilize heavy hot-rolled steel sections, such as steel angles or hollow structural section tubes, to transfer the load from the end seats of the floor joist and/or from the load-bearing wall studs of the stories above to the supporting load-bearing wall below. The use of hot rolled steel elements results in significant increase in construction cost and time. Such heavy steel elements would be unnecessary if the concrete slab thickening on top of the CFS wall can be made to act compositely with the CFS track. Composite action can be achieved by attaching stand-off screws to the track and encapsulating the screw shank in the deck concrete. A series of experimental studies were performed on full-scale test specimens representing concrete/CFS flexural elements under gravity loads. The studies were designed to investigate the structural performance of concrete/CFS simple beams and concrete/CFS continuous headers. The results indicate that concrete/CFS composite flexural elements are feasible and their structural behavior can be modeled with reasonable accuracy.

Partial Composite Action of Gypsum-Sheathed Cold-Formed Steel Wall Stud Panels (석고보드와 결합된 강재 샛기둥 패널의 부분 합성거동)

  • Lee, Young Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.373-380
    • /
    • 2001
  • The problem addressed in this study is how to analytically treat the partial composite action for wall panels. An equation, derived for wood-joist floor systems, which determines deflections for beams with partial composite action is introduced. The equation is applied to the calculation of the mid-span deflection for gypsum-sheathed, cold-formed steel was stud panels. The objective of this study is to properly reflect the influence of the following factors in the calculation of mid-span deflection for the panel: connection slip, local buckling, perforations in the stud web, and effects from joints in the sheathing. Predicted deflections based on an upper bound for connection rigidity were closest to experimental deflections.

  • PDF

The Estimation of Dynamic/Impact Strength Characteristics of High Tensile Steel by Dynamic Lethargy Coefficient (동적무기력계수에 의한 고장력강의 동적.충격강도 특성 평가)

  • 송준혁;박정민;채희창;강희용;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.96-100
    • /
    • 2002
  • The purpose of this paper is presented a rational method of predicting dynamic/impact tensile strength of high tensile steel materials widely used fur structural material of automobiles. It is known that the ultimate strength is related with the loading speed and the Lethargy Coefficient from the tensile test. The Dynamic Lethargy Coefficient is proportional to the disorientation of the molecular structure and indicates the magnitude of defects resulting from the probability of breaking the bonds responsible for its strength. The coefficient is obtained from the simple tensile test such as failure time and stresses at fracture. These factors not only affect the static strength but also have a great influence on the dynamic/impact characteristics of the joist and the adjacent structures. This strength is used to analyze the failure life prediction of mechanical system by virtue of its material fracture. The impact tensile test is performed to evaluate the life parameters due to loading speed with the proposed method. Also the evaluation of the dynamic/impact effect on the material tensile strength characteristics is compared with the result of Campbell-Cooper equation to verify the proposed method.

Withdrawal and Lateral Resistance of Nail Joints Composed of Dimension Lumber and OSB in Light-Frame Wood Construction (경골목구조에서 구조재와 오에스비로 구성된 못 접합부의 인발 및 전단성능)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.211-220
    • /
    • 2013
  • The nailed joints in wood construction are commonly designed to resist and carry the lateral load but also subject to withdrawal force like uplift load due to the wind. This research was conducted to evaluate the performance of nailed joint composed of dimension lumber and sheathing materials through the nail withdrawal and unsymmetric double shear joint test, and then compared to current design values. The withdrawal strength was greatly dependant on wood specific gravity, and the withdrawal strength of I-joist with OSB showed higher value in spite of low specific gravity. The maximum withdrawal loads were greater than that of derived current design values about 5 times. The lateral resistance of Japanese larch/OSB nailed joints was higher than that of SPF/OSB nailed joint, and derived allowable lateral strength of nailed joints in this study exceeded the current design values. The failure mode of nailed joints was primarily due to the nail bending and this tendency was notable in SPF/OSB nailed joint.

Evaluation on Effect of Constitution of Timber Framed Floor on Insulation Performance Against Impact Sound by Field Measurements (현장실험을 통한 목조바닥의 구성요소가 충격음 차단성능에 미치는 영향 평가)

  • Park, Joo-Saeng;Lee, Sang-Joon;Kim, Se-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.431-444
    • /
    • 2012
  • Constituents of timber framed floor affect the insulation performance against impact sound significantly. Among them, installation of massive sound absorbing layer and reinforcement of stiffness of timber floor have been considered as major factors that improve the insulation performance against impact sound. Researches on evaluating the effect of floor constitutions have been carried out through the field measurements for timber framed buildings in Korea. It is concluded that the impact sound pressure level at the relatively lower frequency governs the overall insulation performance, and can be improved by the installation of sound absorbing layer and reinforcement of floor stiffness. Especially, the insulation performance against heavy impact sound was improved significantly when the massive cement mortar layer for floor heating system was installed and the stiffness was reinforced by shortening the joist span using additional beam at the mid-position of original span.

Evaluation of Impact Sound Insulation Properties of Light-Framed Floor with Radiant Floor Heating System

  • Nam, Jin-Woo;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.75-84
    • /
    • 2002
  • In order to find out impact insulation properties, various types of current radiant floor heating systems and light-framed floors that are used in light-framed residential buildings were evaluated for two types of impact sources at the same time. Sound Pressure Level (SPL) was different from each impact sources for those spectrum patterns and peaks. In case of light-framed floor framework, the excitation position and the assumed effective vibrating area have effects on sound pressure level but it is not considerable, and Normalized SPL was reduced for each frequency by increasing the bending rigidity of joist. The mortar layer in the radiant heating system had relatively high density and high impedance, therefore, it distributed much of the impact power when it was excited, and reduced the Normalized SPL considerably. Nevertheless, Increasing a thickness of mortar layer had little influence on SPL. Ceiling components reduced the sound pressure level about 5~25 dB for each frequency. Namely, it had excellent sound insulation properties in a range from 200 to 4,000 Hz frequency for both heavy and lightweight impact sources. Also, there was a somewhat regular sound insulation pattern for each center frequency. The resilient channel reduced the SPL about 2~11 dB, irrelevant to impact source. Consequently, current radiant floor heating systems which were established in light-framed residential buildings have quite good impact sound insulation properties for both impact sources.

The Strength and Applications of OSB Gusset Trusses for Field Assembly (현장조립용 OSB 덧댐판 트러스의 강도 및 활용방안)

  • Kim, Tae-Woo;Ha, Bin;Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.708-713
    • /
    • 2014
  • Trusses are widely used for wooden houses in the areas where wood construction in generalized for residential housings such as North America, Australian, New Zealand. In Korea, joist and rafter system is generally used because of the production cost, transportation cost and lack of experience required for truss manufacturing. In this study, roof trusses and flat trusses were manufactured by using oriented strand board (OSB) gusset plates for field assembly and tested under bending load to obtain the allowable loads. The allowable load and the actual load of 6m span roof trusses were 10.60 kN and 5.26 kN, respectively, which is regarded to be sufficient for use in construction. The allowable load and the actual load of 6m span floor flat trusses were 7.18 kN and 7.43 kN, respectively. For flat trusses, the allowable load is slightly lower than the actual load but the difference in very small, and it is thought that flat trusses can be used for construction by applying small change of structures and members.