• 제목/요약/키워드: Joints

검색결과 5,467건 처리시간 0.031초

Dowel직경(直徑)이 목재(木材)와 목질재료(木質材料) 접합부(接合部)의 인발강도에 미치는 영향(影響) (Effect of Dowel Diameters affecting to Withdrawal Strength of Wood and Wood-Based Material Joints)

  • 이필우;오세창;박희준
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권2호
    • /
    • pp.79-85
    • /
    • 1990
  • Traditional complex joints have used to a wide variety of wooden furniture construction. Dowel joint is the most popular joint s. However design of this joint to meet specified service condition has been hampered by a lack of proven design formulas which can be use to predict their strength. The object of this study is to investigate the withdrawal strength and effect of dowel diameters in wood and wood based materials. The obtained results were as follows; 1. The relationship between withdrawal strength and dowel diameter is found to be linear. 2. Withdrawal strength of medium density fiberboard and Sepetir in end-to-side joints is superior to Antiaris, particleboard and plywood. 3. In end-to-end joints, withdrawal strength of medium density fiberboard is the most superior joint. but Sepetir. Antiaris and plywood have similarly strength and particleboard is inferiority. 4. Withdrawal strength in end-to-end joints of Antiaris and plywood is higher than in end-ta-side joints. But in end-to-end joints of Sepetir. medium density fiberboard and particleboard is similarity in end-to-side joints.

  • PDF

인체의 조인트와 움직임 정보를 이용한 인간의 행동패턴 인식 (Human Activity Pattern Recognition Using Motion Information and Joints of Human Body)

  • 곽내정;송특섭
    • 한국정보통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1179-1186
    • /
    • 2012
  • 본 논문에서는 인체의 조인트와 조인트의 움직임 정보를 이용하여 인간의 행동을 인식하는 알고리즘을 제안한다. 제안방법은 입력되는 비디오에서 객체를 추출하고 인체의 비율정보를 이용하여 조인트를 자동추출하며 각 조인트에 블록매칭 기법을 적용하여 조인트의 움직임 정보를 얻는다. 제안방법은 움직임이 있는 조인트, 조인트의 움직임의 방향벡터와 조인트의 x와 y좌표의 증가(+)와 감소(-)를 부호로 나타낸 것을 행동 인식을 위한 기본 파라메터로 사용한다. 제안된 방법은 웹카메라에서 입력되는 영상에서 8가지 행동에 대해 실험하였으며 인간의 행동 인식률에 있어 좋은 결과를 보였다.

CHARACTERISTICS OF ROLLED H SECTION STEEL WELDS JOINTED BY NEWLY DEVELOPED FLASH WELDING SYSTEM

  • Kim, You-Chul;Oku, Kentaro;Umekuni, Akira;Fujii, Mitsuru
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.826-830
    • /
    • 2002
  • In the civil engineering and architecture fields, welding for large sectional members, such as I section steel and H section steel, are usually performed. a flash welding system, by which large I section steel or H section steel can be welded for a short time, was newly developed. In order to know the basic characteristics of welded joints, the specimens were cut out from flash welded joints, and tensile and fatigue experiments were carried out. The joint efficiency of welded joints by flash welding is 100% for the specimens with reinforcements and 93% for without reinforcements. The fatigue strength of welded joints with reinforcement was about 50% of that of the base metal. Removing the reinforcement generated by flash welding, fatigue strength of flash welded joints became 75% of that of the base metal. In case of flash welded joints with reinforcements, after a couple of fatigue cracks had propagated, ductile fracture occurred at the toe. In flash welded joints without reinforcements, fracture occurred at the bond or at HAZ (Heat Affected Zone). In case of fracture at the bond, fracture was brittle, and in case at HAZ, fracture was ductile.

  • PDF

유연도 영향계수법을 이용한 접촉 결합부의 모델링 (Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient)

  • 오제택;조성욱;이규봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.814-819
    • /
    • 2003
  • Machine tool design concepts have evolved towards high efficiency, accurate precision. high structural integrity, and multi-functional systems. Like many other structures, machine tools are also composed of many parts. When these parts are assembled, many kinds of joints are used. In the finite element analysis of these assembled structures, most joints are commonly considered as rigid joints. But, to get the more accurate solution, we need to model these joints in a appropriate manner. In this study, rational dynamic modeling and analysis method for complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method. the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model can be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models. which demonstrated the practical applicability of the proposed method.

  • PDF

Behaviour of steel joints under fire loading

  • da Silva, Luis Simoes;Santiago, Aldina;Real, Paulo Vila;Moore, David
    • Steel and Composite Structures
    • /
    • 제5권6호
    • /
    • pp.485-513
    • /
    • 2005
  • This paper presents a state-of-the-art on the behaviour of steel joints under fire loading and some recent developments in this field, currently being carried out by the authors. Firstly, a review of the experimental research work on steel joints is presented, subdivided into isolated member tests, sub-structure tests and tests on complete building structures. Special emphasis is placed on the seventh Cardington test, carried out by the authors within a collaborative research project led by the Czech Technical University in Prague. Secondly, a brief review of various temperature distributions within a joint is presented, followed by a discussion of the behaviour of isolated joints at elevated temperature, focussing on failure modes and analytical procedures for predicting the moment-rotation behaviour of joints at elevated temperature. Finally, a description of the coupled behaviour of joints as part of complete structures is presented, describing previous work and investigations on real fire (including heating and cooling phases) currently being carried out by the authors.

Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments

  • Dar, M. Adil;Subramanian, N.;Pande, Sumeet;Dar, A.R.;Raju, J.
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.243-254
    • /
    • 2020
  • Devastating RC structural failures in the past have identified that the behavior of beam-column joints is more critical and significantly governs the global structural response under seismic loading. The congestion of reinforcement at the beam-column joints with other constructional difficulties has escalated the attention required for strengthening RC beam-column joints. In this context, numerous studies have been carried out in the past, which mainly focused on jacketing the joints with different materials. However, there is no comparative study of different approaches used to strengthen RC beam-column joints, from efficiency and cost perspective. This paper presents a detailed investigation carried out to study the various strengthening schemes of exterior RC beam-column joints, viz., steel fiber reinforcement, carbon fiber reinforced polymer (CFRP) strengthening, steel haunch strengthening, and confining joint reinforcement. The effectiveness of each scheme was evaluated experimentally. These specimens were tested under horizontal loading that produced opening moments on the joints and their behavior was studied with emphasis on strength, displacement ductility, stiffness, and failure mechanism. Special attention was given to the study of crack-width.

유한요소법에 의한 튜블라 이음부의 응력집중계수 및 피로강도 해석 (A Study on the Stress Concentration Factor and Fatigue Strength for T-Tubular Joints by FEM)

  • 엄동석;강성원;하우일
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.141-150
    • /
    • 1994
  • In designing, the strength of tubular joint has been an important problem for integrity of steel structures in which many tubular members are used. This paper presents the results of FEM analysis on stress concentration and fatigue crack initiation life for two types of tubular joints. One is circular and rectangular T type joints which consist of circular brace and rectangular chord. Another is circular and circular T type joints which consist of circular brace and circular chord. FEM analyses were performed under the axial load and in-plane bending moment. The fatigue crack initiation life can be estimated by using $\varepsilon$-N curve and by applying the Palmgren-Miner linear damage rule. According to the results, the stress concentration factor(SCF) of circular and rectangular joints is higher than that of circular and circular joints. The fatigue crack initiation lives of circular-circular joints and circular-rectangular joints were calculated.

  • PDF

An investigation on the bearing capacity of steel girder-concrete abutment joints

  • Liang, Chen;Liu, Yuqing;Zhao, Changjun;Lei, Bo;Wu, Jieliang
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.319-336
    • /
    • 2021
  • To achieve a rational detail of the girder-abutment joints in composite integral bridges, and validate the performance of the joints with perfobond connectors, this paper proposes two innovative types of I-shaped steel girder-concrete abutment joints with perfobond connectors intended for the most of bearing capacity and the convenience of concrete pouring. The major difference between the two joints is the presence of the top flange inside the abutments. Two scaled models were investigated with tests and finite element method, and the damage mechanism was revealed. Results show that the joints meet design requirements no matter the top flange exists or not. Compared to the joint without top flange, the initial stiffness of the one with top flange is higher by 7%, and the strength is higher by 50%. The moment decreases linearly in both types of the joints. At design loads, perfobond connectors take about 70% and 50% of the external moment with and without top flange respectively, while at ultimate loads, perfobond connectors take 53% and 26% of the external moment respectively. The ultimate strengths of the reduced sections are suggested to be taken as the bending strengths of the joints.

FATIGUE DESIGN FORSUS30IL SPOT-WELDED MULTI-LAP JOINTS SUBJECTED TO TENSILE SHEAR LOAD

  • Na, T.H.m;Jung, W.S.;Bae, D.H;I.S.Shon
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.121-126
    • /
    • 2002
  • The railroad cars or the commercial vehicles are generally manufactured by the spot welding. Among various kinds of spot welded lap joints, multi-lap joints are one of popular joints in manufacturing their body structures. But, fatigue strength of these joints are lower than that of base metal due to high stress concentration at the nugget edge of the spot weld and are known to considerably be influenced by welding conditions as well as the mechanical and geometrical factors. Thus, it is necessary to establish a reasonable and systematic fatigue design criterion for spot welded multi-lap joints. In this paper, the $\Delta$P-N$_{f}$ curves has been rearranged in the $\Delta$$\sigma$-N$_{f}$ relation with the maximum stress at the nugget edge of spot welded multi-lap joints subjected to tensile shear load. Consequently, the fatigue data were evaluated in terms of fracture mechanics by plotting on the $\Delta$OP-N$_{f}$ curves. From the results obtained, both of them have been revealed to be applicable to fatigue design of spot welded multi-lap joints. However, the fracture mechanical approach is found to be more effective than the maximum stress approach in the range on N$_{f}$$\geq$2x10$^{5}$ . .

  • PDF

인체 모델링을 이용한 인체의 조인트 자동 검출 및 인체 매핑 (Automatic Detecting of Joint of Human Body and Mapping of Human Body using Humanoid Modeling)

  • 곽내정;송특섭
    • 한국정보통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.851-859
    • /
    • 2011
  • 본 논문에서는 인간과 컴퓨터의 상호작용을 위해 연속된 입력영상에서 인체의 실루엣과 조인트를 자동추출하고 조인트를 추적함으로 객체를 추적하는 방법을 제안한다. 또한 추출된 조인트를 이용하여 인체를 매핑하여 사람의 동작을 재현한다. 이를 위해 인체의 치수를 이용하여 인체 움직임을 제어하는 14개의 조인트로 인체를 모델링한다. 제안방법은 단일카메라로 RGB 컬러로 입력되는 영상을 색상, 채도, 명암의 영상으로 변환한 후 차 영상기법을 이용하여 인체의 실루엣을 추출한다. 추출된 실루엣의 코너점과 인체 모델링 정보를 이용하여 조인트를 자동 검출한다. 객체의 움직임 추적은 전체 영상 중 조인트를 중심으로 블록매칭 기법을 이용하며 추출된 조인트의 위치정보를 이용하여 인체의 움직임을 매핑한다. 제안방법을 실험동영상에 적용한 결과 인체의 실루엣과 조인트를 자동 검출하며 추출된 조인트로 인체의 매핑이 효율적으로 이루어졌다. 또한 조인트의 추적이 매핑된 인체에 반영되어 인체의 움직임도 적절히 표현되었다.