• Title/Summary/Keyword: Jointed rock mass

Search Result 113, Processing Time 0.026 seconds

A Study on Applicability of Pre-splitting Blasting Method According to Joint Frequency Characteristics in Rock Slope (암반사면의 절리빈도 특성에 따른 프리스플리팅 발파공법의 적용성 연구)

  • Kim, Shin;Lee, Seung-Joong;Choi, Sung-O.
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.1-16
    • /
    • 2010
  • This study focuses on the phenomenon that the blast damaged zone developed on rock slope surfaces can be affected by joint characteristics rather than by explosive power when the pre-splitting is applied to excavate a jointed rock slope. The characteristics of rock joints on a slope were investigated and categorized them into 4 cases. Also an image processing system has been used for comparing the distribution pattern of rock blocks. From this investigation, it was found that the rock blocks bigger than 2,000 mm occupied 42% in the case of single joint set and it showed the well efficiency of pre-splitting blast. In cases of 2~3 parallel joint sets and 2~3 intersecting joint sets are developed on rock surfaces, the rock blocks in the range of 1,000~2,000 mm occupied 43.6% and 35.8%, respectively, and it showed that the efficiency of pre-splitting was decreased. When more than 3 joint sets are randomly developed, however, the rock blocks in the range of 250~500 mm occupied 35% and there was no block bigger than 1,000 mm. This denotes that the blasting with pre-splitting was not effective. The numerical analysis using PFC2D showed that the blast damaged zone in a rock mass could be directly influenced by the pre-splitting. It is, therefore, required to investigate the discontinuity pattern on rock surfaces in advance, when the pre-splitting method is applied to excavate jointed rock slopes and to apply a flexible blating design with a consideration of the joint characteristics.

A Numerical Study for Stability of Tunnel in Jointed Rock Using Barton-Bandis Model (BB절리모델을 활용한 절리암반속 터널안정성의 수치해석적 연구)

  • Lee, Sung-Ki;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.3
    • /
    • pp.15-29
    • /
    • 2001
  • For the pertinent use of NMT method, both characteristics of joints (JRC, JCS and ${\phi}_r$) and characteristics of rock mass (Q-Value) must be investigated carefully. The main objective of the study presented is to investigate how sensitive the predicted behaviour of an underground excavation is to various realistic assumptions about some input parameter for the jointed rock mass. Joint pattern in the tunnel is predicted by statistical approach (chi-square test). In this paper, sensitivity studies involving in joint characteristics were carried out. The parametric studies involving change in Barton-Bandis joint model have shown that JCS is relatively insensitive to JRC and ${\phi}_r$. An increase in JRC value may not, according to the Barton-Bandis model, necessarily lead to a decrease in displacement. The importance of dilation in predicting the behaviour of a rock mass around an excavation is emphasized from a comparison of the Barton-Bandis joint behaviour model with the Mohr-Coulomb model. The Barton-Bandis model predicted higher stress, which allow for the build-up of stress caused by dilatant behaviour.

  • PDF

Numerical Studies of Subsidence and Hydraulic Conductivity Enhancement Due to Underground excavation (지하 굴착에 의한 침하와 수리전도도 증가에 관한 수치해석적 연구)

  • Yoon, Yong-Kyun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.139-146
    • /
    • 2000
  • This study investigates the changes of subsidence and hydraulic conductivity by underground mining. Coupling between post-mining induced strains and strain-dependent hydraulic conductivities is obtained by idealizing a jointed rock mass as an equivalent porous medium in which the hydraulic conductivity of a single joint is defined through parallel plate description. Results indicate that post-mining hydraulic conductivities are directly related to the strain field occurred by subsidence induced deformation. Maximum subsidence and hydraulic conductivity values increase as a panel width does widen. Joint spacing has an effect on the intensity of the changes in hydraulic conductivity.

  • PDF

Pillar Width of Twin Tunnels in Horizontal Jointed Rock Using Large Scale Model Tests (대형모형실험을 통한 수평 절리암반에서의 병설터널 이격거리)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.352-359
    • /
    • 2010
  • Stability of twin tunnels depends on the pillar width and the ground condition. In this study, large scale model tests were conducted for investigating the influence of the pillar width of twin tunnels on their behavior in the regular horizontal jointed rock mass. Jointed rocks was composed of concrete blocks. Pillar width of twin tunnels varied in 0.29D, 0.59D, 0.88D and 1.18D, where D is the tunnel width. During the test, pillar stress, lining stress, tunnel distortion, and ground displacement were measured. Lateral earth pressure coefficient was kept in a constant value 1.0. As a result, it was found that the pillar stress and the displacement of the ground and tunnel were increased by decreasing pillar width. The maximum displacement rate was measured just after the upper excavation in each construction sequence. And the maximum influence position was the right shoulder of the preceeding tunnel at the pillar side. It was also found that for the stability assessment the inner displacement was more critical than the crown displacement. The influence zone was formed at the pillar width 0.59D~0.88D that was smaller than 0.8D~2.0D, which was proposed by experience for a good ground condition. And it would be concluded that horizontal joints could also influence on the stability of the twin tunnels.

Probabilistic rock mass classification using electrical resistivity - Theoretical approach of relationship between RMR and electrical resistivity- (전기비저항을 이용한 확률론적 암반분류 - RMR과 전기비저항 관계 이론 중심으로-)

  • Ryu, Hee-Hwan;Joo, Gun-Wook;Cho, Gye-Chun;Kim, Kyoung-Yul;Lim, Young-Duck
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.97-111
    • /
    • 2013
  • It is very important to understand the condition of the surround rock for the successful construction of underground space. Representative methods of estimating the rock mass condition are RMR method and Q-system, and they are applied on design, construction, and maintenance. However, many problems with the accuracy of the measurement method and the subjective viewpoint are questioned continuously, so many researchers have been studied for estimating rock condition from various methods. Most of them show only the local relation and a tendency between site investigation data and rock conditions. In this paper, the relationship between RMR method and electrical resistivity is deducted using the analytical equation derived theoretically from electric field analysis on jointed rock mass. And also, probabilistic relationship between RMR method and electrical resistivity is deducted for the increase of accuracy. If a suggested method is applied with the conventional method for estimating the rock condition, it will be helpful to estimate RMR values on the field.

Pillar load and ground deformation in 2-arch tunnel in the jointed rock mass (절리암반에서 2-Arch 터널의 필라하중과 지반변위)

  • Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • Loads on the pillar and ground deformation in 2-arch tunnel, which is excavated in the rock mass with regular discontinuities, depending on the dips of discontinuities and the construction sequences were experimentally studied. Large scale model tests in the biaxial test facility were performed. Tested model (width 3.3m, height 3.0m, and length 0.45m) for 2-arch tunnel in 1/10 scale were built with various dips. Test results show that discontinuities have greate affects on the behavior of the 2-arch tunnel, especially on the pillar loads and ground deformation.

  • PDF

Shear failure and mechanical behavior of flawed specimens containing opening and joints

  • Zhang, Yuanchao;Jiang, Yujing;Shi, Xinshuai;Yin, Qian;Chen, Miao
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.587-600
    • /
    • 2020
  • Shear-induced instability of jointed rock mass has greatly threatened the safety of underground openings. To better understand the failure mechanism of surrounding rock mass under shear, the flawed specimens containing a circular opening and two open joints are prepared and used to conduct direct shear tests. Both experimental and numerical results show that joint inclination (β) has a significant effect on the shear strength, dilation, cracking behavior and stress distribution around flaws. The maximum shear strength, occurring at β=30°, usually corresponds to a unifrom stress state around joint and an intense energy release. However, a larger joint inclination, such as β=90°~150°, will cause a more uneven stress distribution and a stronger stress concentration, thus a lower shear strength. The stress distribution around opening changes little with joint inclination, while the magnitude varys much. Both compression and tension around opening will be greatly enhanced by the 30°-joints. In addition, a higher normal stress tends to enhance the compression and suppress the tension around flaws, resulting in an earlier generation and a larger proportion of shear cracks.

The Characteristics of Stress Distribution on Two-arch Tunnel's Pillar due to Surface Loads in the Discontinuous Rock Mass (불연속성 암반에 위치한 2-아치 터널에서 지표면 하중 작용시 필러에 전달되는 응력 특성)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.65-73
    • /
    • 2009
  • Large scale model tests and numerical analyses are performed to investigate the stress distribution of pillar due to surface loading nearby two-arch tunnel which is constructed in the regularly jointed rocks. It is observed that the influence of discontinuities on the stress distribution in the discontinuous rock mass and the underground stresses induced by surface loading are greater than those of linear elastic theory. Especially, lines of equal stresses are developed to the direction of inclination according to the inclined grade. In cases of discontinuities imbedded in parallel with or vertical to the ground, the pressure bulbs are formed symmetrically, however, the inclined ones result in stress distribution in parallel with and vertical to the planes of discontinuities. Results indicated that stress distribution is seriously affected by the angle of discontinuity. When stresses propagating to the pillar need to be estimated, relative location of surface loading, grade of discontinuous plane, and location of two-arch tunnel should be carefully considered.

Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage

  • Aalianvari, A.
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.671-683
    • /
    • 2017
  • Groundwater control is a significant issue in most underground construction. An estimate of the inflow rate is required to size the pumping system, and treatment plant facilities for construction planning and cost assessment. An estimate of the excavation-induced drawdown of the initial groundwater level is required to evaluate potential environmental impacts. Analytical and empirical methods used in current engineering practice do not adequately account for the effect of the jointed-rock-mass anisotropy and heterogeneity. The impact of geostructural anisotropy of fractured rocks on tunnel inflows is addressed and the limitations of analytical solutions assuming isotropic hydraulic conductivity are discussed. In this paper the unexcavated Zagros tunnel route has been classified from groundwater flow point of view based on the combination of observed water inflow and numerical modeling results. Results show that, in this hard rock tunnel, flow usually concentrates in some areas, and much of the tunnel is dry. So the remaining unexcavated Zagros tunnel route has been categorized into three categories including high Risk, moderately risk and low risk. Results show that around 60 m of tunnel (3%) length can conduit the large amount of water into tunnel and categorized into high risk zone and about 45% of tunnel route has moderately risk. The reason is that, in this tunnel, most of the water flows in rock fractures and fractures typically occur in a clustered pattern rather than in a regular or random pattern.

Numerical Studies of Subsidence and Hydraulic Conductivity Enhancement Due to Underground Excavation (지하 굴착에 의한 침하와 수리전도도 증가에 관한 수치해석적 연구)

  • 윤용균
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.387-394
    • /
    • 2000
  • This is study investigates the changes of subsidence and hydraulic conductivity by underground mining Coupling between post-mining induced strains and strain-dependent hydraulic conductivities is obtained by idealizing a jointed rock mass as an equivalent porous medium in which the hydraulic conductivity of a single joint is defined through parallel plate description. Results indicate that post-mining hydraulic conductivities are directly related to the strain field occurred by subsidence induced deformation. Maximum subsidence and hydraulic conductivity values increase as a panel width does widen. Joint spacing has an effect on the intensity of the changes in hydraulic conductivity.

  • PDF