• Title/Summary/Keyword: Joint routing and scheduling

Search Result 8, Processing Time 0.138 seconds

Cross-Layer Resource Allocation with Multipath Routing in Wireless Multihop and Multichannel Systems

  • Shin, Bong-Jhin;Choe, Jin-Woo;Kang, Byoung-Ik;Hong, Dae-Hyoung;Park, Young-Suk
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.221-231
    • /
    • 2011
  • A joint multipath routing algorithm and channel allocation and scheduling for wireless multihop and multichannel systems is discussed. In packet transmission, distribution of packets to multiroutes makes it possible to reduce the transmission cost of the channels. Cross-layer cooperation of routing, channel allocation, and scheduling is an effective method of packet distribution. As a framework for the cooperation, we propose a multiroute distance vector routing (MDVR) scheme. In the MDVR scheme, the routing table is logically placed in between the routing and link layers, and the table plays the role of a service access point between these two layers. To evaluate the performance of MDVR, simulation is performed in a multichannel, multihop environment. The simulation results show that the MDVR framework can be efficiently implemented in the form of a distributed routing algorithm. It is also shown that in MDVR, the system-wise channel efficiency is almost 25% higher than that in a conventional single-route routing approach.

Cross-layer Design of Joint Routing and Scheduling for Maximizing Network Capacity of IEEE 802.11s based Multi-Channel SmartGrid NAN Networks (IEEE 802.11s 를 사용한 스마트그리드 NAN 네트워크의 최대 전송 성능을 위한 다중 채널 스케쥴링과 라우팅의 결합 설계)

  • Min, Seok Hong;Kim, Bong Gyu;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.25-36
    • /
    • 2016
  • The goal of the SmartGrid is to maximize energy efficiency by exchanging bi-directional real-time power information with the help of ICT(Information and Communication Technology). In this paper, we propose a "JRS-MS" (Joint Routing and Scheduling for Multi-channel SmartGrid) algorithm that uses numerical modeling methods in IEEE 802.11s based STDMA multi-channel SmartGrid NAN networks. The proposed algorithm controls the amount of data transmission adaptively at the link layer and finds a high data-rate path which has the least interference between traffic flows in multi-channel SmartGrid NAN networks. The proposed algorithm improve transmission performance by enhancing network utilization. By comparing the results of performance analysis between the proposed algorithm and the JRS-SG algorithm in the previous paper, we showed that the JRS-MS algorithm can improve transmission performance by maximally utilizing given network resources when the number of flows are increasing in the multi-hop NAN wireless mesh networks.

Channel Assignment, Link Scheduling, Routing, and Rate Control for Multi-Channel Wireless Mesh Networks with Directional Antennas

  • Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.884-891
    • /
    • 2016
  • The wireless mesh network (WMN) has attracted significant interests as a broadband wireless network to provide ubiquitous wireless access for broadband services. Especially with incorporating multiple orthogonal channels and multiple directional antennas into the WMN, each node can communicate with its neighbor nodes simultaneously without interference between them. However, as we allow more freedom, we need a more sophisticated algorithm to fully utilize it and developing such an algorithm is not easy in general. In this paper, we study a joint channel assignment, link scheduling, routing, and rate control problem for the WMN with multiple orthogonal channels and multiple directional antennas. This problem is inherently hard to solve, since the problem is formulated as a mixed integer nonlinear problem (MINLP). However, despite of its inherent difficulty, we develop an algorithm to solve the problem by using the generalized Benders decomposition approach [2]. The simulation results show the proposed algorithm provides the optimal solution to maximize the network utility, which is defined as the sum of utilities of all sessions.

Cross-Layer Resource Allocation in Multi-interface Multi-channel Wireless Multi-hop Networks

  • Feng, Wei;Feng, Suili;Zhang, Yongzhong;Xia, Xiaowei
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.960-967
    • /
    • 2014
  • In this paper, an analytical framework is proposed for the optimization of network performance through joint congestion control, channel allocation, rate allocation, power control, scheduling, and routing with the consideration of fairness in multi-channel wireless multihop networks. More specifically, the framework models the network by a generalized network utility maximization (NUM) problem under an elastic link data rate and power constraints. Using the dual decomposition technique, the NUM problem is decomposed into four subproblems - flow control; next-hop routing; rate allocation and scheduling; power control; and channel allocation - and finally solved by a low-complexity distributed method. Simulation results show that the proposed distributed algorithm significantly improves the network throughput and energy efficiency compared with previous algorithms.

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

Cross-layer Design and its Performance Evaluation of Joint Routing and Scheduling for Maximizing Network Capacity of Wireless Mesh Networks (무선 메쉬 네트워크의 최대 전송 성능을 위한 라우팅과 스케쥴링의 계층 교차적 설계 및 성능 분석)

  • Min, Seokhong;Kim, Byungchul;Lee, Jaeyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.30-45
    • /
    • 2014
  • Recently, multimedia application users who demand for ubiquitous computing environment are rapidly increasing, and wireless mesh network is receiving attention as a cost-effective key technology for next generation wireless networking. When multiple flows are transmitting data at the same time in the network, routing for path selection of each flow and link resource allocation for data transmission of each flow are one of the key factors that influence to the effectiveness of the network directly. In this paper, we consider problems for path discovery and resource allocation of links at the same time and we propose an algorithm based on mathematical modeling using a technique for cross-layer optimization design in STDMA-based wireless mesh networks that can enhance transfer performance for each flow. We show by performance analysis that the proposed algorithm can enhance the throughput performance by maximally utilizing given bandwidth resources when the number of flows increase in multi-hop wireless mesh networks.

Joint Relay Selection and Resource Allocation for Delay-Sensitive Traffic in Multi-Hop Relay Networks

  • Sha, Yan;Hu, Jufeng;Hao, Shuang;Wang, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3008-3028
    • /
    • 2022
  • In this paper, we investigate traffic scheduling for a delay-sensitive multi-hop relay network, and aim to minimize the priority-based end-to-end delay of different data packet via joint relay selection, subcarrier assignment, and power allocation. We first derive the priority-based end-to-end delay based on queueing theory, and then propose a two-step method to decompose the original optimization problem into two sub-problems. For the joint subcarrier assignment and power control problem, we utilize an efficient particle swarm optimization method to solve it. For the relay selection problem, we prove its convexity and use the standard Lagrange method to deal with it. The joint relay selection, subcarriers assignment and transmission power allocation problem for each hop can also be solved by an exhaustive search over a finite set defined by the relay sensor set and available subcarrier set. Simulation results show that both the proposed routing scheme and the resource allocation scheme can reduce the average end-to-end delay.

Joint Routing, Scheduling, and Power Control for Wireless Sensor Networks with RF Energy Transfer Considering Fairness (무선 에너지 전송 센서망에서의 공평성을 고려한 라우팅, 스케줄링, 전력 제어)

  • Moon, Seokjae;Roh, Hee-Tae;Lee, Jang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.206-214
    • /
    • 2016
  • Recently, radio frequency energy transfer (RFET) attracts more and more interests for powering sensor nodes in the wireless sensor network (WSN). In the conventional WSN, reducing energy consumption of sensor nodes is of primary importance. On the contrary, in the WSN with RFET, reducing energy consumption is not an important issue. However, in the WSN with RFET, the energy harvesting rate of each sensor node depends on its location, which causes the unbalanced available energy among sensor nodes. Hence, to improve the performance of the WSN with RFET, it is important to develop network protocols considering this property. In this paper, we study this issue with jointly considering routing, scheduling, and power control in the WSN with RFET. In addition, we study this issue with considering two different objectives: 'Max-min' with which we tries to maximize the performance of a sensor node having the minimum performance and 'Max-min fairness' with which we tries to achieve max-min fairness among sensor nodes. We show that our solutions can improve network performance significantly and we also discuss the differences between 'Max-min' and 'Max-min fairness'.