• Title/Summary/Keyword: Joint position error

Search Result 115, Processing Time 0.027 seconds

The Effects of Closed Kinetic Chain Exercise and Open Kinetic Chain Exercise on the Knee Position Sense in the Normal Adults

  • Lim, Ga-Rin;Kwon, Eun-Hwa;Kim, Dong-Sung;Kim, Jung-Hyo;Park, Jin;Choi, Eun-Hee;Kim, Sik-Hyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.1 no.2
    • /
    • pp.126-135
    • /
    • 2010
  • The purpose of this study is to investigate the effects of closed and open kinetic chain exercise for increasing knee joint function on the knee position sense in the normal adults. Thirty normal adults(male 15, female 15; mean age: $22.13{\pm}2.58$ years) were participated in this study into two groups, each with 15 people. The group I was trained that closed kinetic chain exercise on the knee joint and the group II was trained that open kinetic chain exercise on the knee joint. Exercise programs performed for 4 weeks, 3 times a week were using Shuttle 2000-1 closed kinetic chain exercise and Knee Extensor open kinetic chain exercise(HUR, Filand). The results of this study were as follows: 1) There were statistically significant decreasing of measuring error degree in $0-20^{\circ}$ were found between before and after training in closed kinetic chain exercise(p<.05). 2) There were statistically significant decreasing of measuring error degree in $21-40^{\circ}$ were found between before and after training in closed kinetic chain exercise(p<.05). 3) There were statistically significant decreasing of measuring error degree in $41-60^{\circ}$ were found between before and after training in closed kinetic chain exercise(p<.05). 4) There were statistically significant decreasing of measuring error degree in $0-20^{\circ}$ were found between before and after training in open kinetic chain exercise(p<.05). 5) There were statistically significant decreasing of measuring error degree in $21-40^{\circ}$ were found between before and after training in open kinetic chain exercise(p<.05). 6) There were statistically significant decreasing of measuring error degree in $41-60^{\circ}$ were found between before and after training in open kinetic chain exercise(p<.05). In conclusion, these results suggest that closed and open kinetic chain exercise has increased in the knee joint proprioception between before and after training. Especially, closed kinetic chain exercise could be more useful intervention than open kinetic chain exercise for increasing proprioceptive sense.

  • PDF

Recognition of Gap between base Plates for Automated Welding of Thick Plates (후판 자동용접을 위한 용접물의 갭 측정)

  • Yi, Hwa-Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.37-45
    • /
    • 1999
  • Many automated welding equipment are used in the industry. However, there are some problems to get quality welds because of the geometric error, thermal distortion, and incorrect joint fit-up. These factors can make the gap between base plates in case of a thick plate welding. The welding product with the quality welds can not be obtained without consideration of the gap. In this paper, the robot path and welding conditions are modified to get the quality weld by detecting the position and size of the gap. In this work, a low-priced laser range sensor is used. The 3-dimensional information is obtained using the motion of a robot, which holds a laser range sensor. The position and size of the gap is calculated using signal processing of the measured 3-dimensional information of joint profile geometry. The data measured by a laser range sensor is segmented by an iterative end point method. The segmented data is optimized by the least square method. The existence of gap is detected by comparing the data with the segmented shape of template. The effects of robot measuring speed and gap size are also tested. The recognizability fo the gap is verified as good by comparing the real joint profile and the calculated joint profile using the signal processing.

  • PDF

Application of Compensation Method of Motion Analysis Error Using Displacement Dependency between Anatomical Landmarks and Skin Markers Due to Soft Tissue Artifact (연조직 변형에 의한 해부학적 지표와 피부마커의 변위 상관성을 이용한 동작분석 오차 보정 방법의 적용)

  • Ryu, Taebeum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.24-32
    • /
    • 2012
  • Of many approaches to reduce motion analysis errors, the compensation method of anatomical landmarks estimates the position of anatomical landmarks during motion. The method models the position of anatomical landmarks with joint angle or skin marker displacement using the data of the so-called dynamic calibration in which anatomical landmark positions are calibrated in ad hoc motions. Then the anatomical landmark positions are calibrated in target motions using the model. This study applies the compensation methods with joint angle and skin marker displacement to three lower extremity motions (walking, sit-to-stand/stand-to-sit, and step up/down) in ten healthy males and compares their performance. To compare the performance of the methods, two sets of kinematic variables were calculated using different two marker clusters, and the difference was obtained. Results showed that the compensation method with skin marker displacement had less differences by 30~60% compared to without compensation. And, it had significantly less difference in some kinematic variables (7 of 18) by 25~40% compared to the compensation method with joint angle. This study supports that compensation with skin marker displacement reduced the motion analysis STA errors more reliably than with joint angle in lower extremity motion analysis.

Kinematic Calibration Method for Redundantly Actuated Parallel Mechanisms (여유구동 병렬기구의 기구학적 보정)

  • 정재일;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.355-360
    • /
    • 2002
  • To calibrate a non-redundantly actuated parallel mechanism, one can find actual kinematic parameters by means of geometrical constraint of the mechanism's kinematic structure and measurement values. However, the calibration algorithm for a non-redundant case does not apply fur a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose (meaning position and orientation). To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm fir a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-DOF parallel mechanism using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.

  • PDF

Effects of Elastic Band-Resistive Exercise using Audio-visual Medium on Pain, Proprioceptive Sense, and Motor Function in Adult Females with Chronic Neck and Shoulder Pain (만성 목-어깨 통증이 있는 여성 성인에게 시청각 매체를 활용한 탄력밴드 저항운동이 통증, 고유수용성 감각과 운동기능에 미치는 영향)

  • Nam Gi Lee;Jeong-Woo Lee
    • Journal of Korean Physical Therapy Science
    • /
    • v.31 no.1
    • /
    • pp.33-45
    • /
    • 2024
  • Background: This study aimed to investigate the effect of elastic band-resistive exercise using audio-visual medium on pain, proprioception, and motor function in adults with chronic neck and shoulder pain. Design: One group pretest-posttest follow-up experimental design. Method: Twenty adult women with neck and shoulder pain voluntarily participated in this study. Elastic band-resistive exercise using audio-visual medium including cervical flexion and extension, shoulder external rotation, and scapular retraction-protraction motions was conducted 5 times a week for 3 weeks. The Numerical Rating Scale, pressure threshold tool, CROM goniometer, and Image J software were used to assess subjective pain level, tenderness threshold (pain), joint position sense error (proprioception), joint range of motion, and postural alignment (motor function), respectively. Result:: The pain intensity and threshold and joint position sense error showed significant decreases after the intervention, whereas the joint range of motion angle revealed significant increases. The postural alignment including forward head posture and rounded shoulder revealed significant improvements after the intervention. Conclusions: Therefore, we suggest that elastic band-resistive exercise through audio-visual medium would be helpful in preventing and managing pain and physical dysfunction in individuals with chronic neck and shoulder pain, and then it would support the development of health management-related online education content.

Differences In Joint Position Sense, Force Sense, and Performance Level of the Upper Extremities According to the Sex, Injury and Pain Experiences of Korean Elite Archers (한국 엘리트 양궁선수들의 성별과 부상, 통증 경험에 따른 상지의 관절위치 감각과 힘감각, 경기력 수준의 차이)

  • Kim, Mun-kyo;Kim, Suhn-yeop
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.3
    • /
    • pp.1-15
    • /
    • 2021
  • Objective: The purpose of this study was to examine the differences in joint position sense (JPS), force sense (FS), and performance level of the upper extremities according to the injury and pain experiences of Korean elite archers. Methods: A total of 15 subjects were briefed about the purpose of this study and agreed to participate voluntarily. JPS was evaluated using the laser-point attached to the wrist while aiming at the target. The difference when relocating while aiming was used as JPS factor. FS was evaluated using load cell through reproduces same muscle strength. Fear-Avoidance Beliefs Questionnaire (FABQ) was used to evaluate psychosocial factors, Kerlan-Jobe Orthopedic Clinic overhead athlete scores (KJOC) and numerical rating scale (NRS) was used to evaluate pain. and performance was evaluated by tournament match score. Results: There is a strong correlation between the current pain and KJOC. Moreover, moderate correlation between KJOC and FABQ also current pain and both upper trapezius and lower trapezius in elite archers. The mean (SD) between groups based on current pain display relatively large margin in force sense than without pain group. The result presents that there is a significant difference in performance and pain. There is a significant difference in the force sense of the upper and lower trapezius and pain. Conclusions: Result present there is a significant difference in functional level in the average comparison between groups according to the presence of absence of current pain. There is a significant difference in the force sense of the upper trapezius as well as lower trapezius and without pain group present a relatively low joint position sense error compared to the groups.

An Adaptive Iterative Learning Control and Identification for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 적응 반복 학습 제어 및 식별)

  • 최준영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2004
  • We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.

An Adaptive Controller Design and its Application for a Flexible Joints Manipulator (유연성 관절.매니퓰레이터에 대한 적응제어기 설계 및 응용)

  • Rho, Hee-Seok;Kim, Eung-Seok;Yi, Keon-Young;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.391-393
    • /
    • 1992
  • This paper proposes an adaptive control system using a 80286 microprocessor-based system and DC servo motors for the control of flexible joint manipulator. In this paper, we construct the controller based on a singular perturbation strategy damping out the elastic oscillations at the joints. we added to the controller the compensator for damping the joint and the term for decreasing the position error between the actuator and the link in order to improve the asymptotical convergence of the position of the link. It is shown that the implementation of this control algorithm can be practical.

  • PDF

Kinematic Calibration of a Cartesian Parallel Manipulator

  • Kim, Han-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.453-460
    • /
    • 2005
  • In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the manipulator may be suitable for applications requiring high speed and accuracy. Using a geometric method and the practical assumption that three revolute joint axes in each limb are parallel to one another, a simple forward kinematics for an actual model is derived, which is expressed in terms of a set of linear equations. Based on the error model, two calibration methods using full position and length measurements are developed. It is shown that for a full position measurement, the solution for the calibration can be obtained analytically. However, since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic calibration experiment on the prototype machine is performed by using a ball-bar. The effectiveness of the kinematic calibration method with a ball-bar is verified through the well­known circular test.

Development of a vision sensor for measuring the weld groove parameters in arc welding process (자동 아크 용접공정의 용접개선변수 측정을 위한 시각 시스템)

  • 김호학;부광석;조형석
    • Journal of Welding and Joining
    • /
    • v.8 no.2
    • /
    • pp.58-69
    • /
    • 1990
  • In conventional arc welding, position error of the weld torch with respect to the weld seam and variation of groove dimension are induced by inaccurate fitup and fixturing. In this study, a vision system has been developed to recognize and compensate the position error and dimensional inaccuracy. The system uses a structured laser light illuminated on the weld groove and perceived by a C.C.D camera. A new algorithm to detect the edge of the reflected laser light is introduced for real time processing. The developed system was applied to arbitarary weld paths with various types of joint in arc welding process. The experimental results show that the proposed system can detect the weld groove parameters within good accuracy and yield good tracking performance.

  • PDF